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Abstract. In this paper, we present a new approach to the Direct
Torque Control (DTC) problem of three-phase induction motor drives.
This approach is based on Model Predictive Control (MPC) exploiting
the specific structure of the DTC problem and using a systematic design
procedure. Specifically, by observing that the DTC objectives, which re-
quire the controlled variables to remain within certain bounds, are related
to feasibility rather than optimality, and by using a blocking control in-
puts regime for the whole prediction horizon we derive a low complexity
controller. The derived controller is an explicit state-feedback control law
that can be implemented as a look-up table. Even though the controller
is derived here for a DTC drive featuring a two-level inverter, the control
scheme can be extended to also tackle three-level inverters. Simulation
results demonstrate that the proposed controller leads to performance
improvements despite its simple structure.

1 Introduction

Enabled by significant technological developments in the area of power electron-
ics, variable speed induction motor drives have evolved to a state of the art
technology within the last decades. These systems, in which DC-AC inverters
are used to drive induction motors as variable frequency three-phase voltage
or current sources, are used in a wide spectrum of industrial applications. One
of the methods for controlling the induction motor’s torque and speed is Di-
rect Torque Control (DTC), which was first introduced in 1985 by Takahashi
and Noguchi [13] and is nowadays a industrial standard for induction motor
drives [14, 11].

The basic characteristic of DTC is that the positions of the inverter switches
are directly determined rather than indirectly, thus refraining from using a mod-
ulation technique like Pulse Width (PWM) or Space Vector (SVM) modulation.
In the generic scheme, the control objective is to keep the motor’s torque and
the amplitude of the stator flux within pre-specified bounds. The inverter is
triggered by hysteresis controllers to switch whenever these bounds are violated.
The choice of the new switch positions is made using a pre-designed look-up ta-
ble that has been derived using geometric insight in the problem and additional
heuristics.
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The main reason that makes the design of the switching table difficult is
the fact that the DTC drive constitutes a hybrid system, i.e. a system incor-
porating both continuous and discrete dynamics - in particular discrete-valued
manipulated variables. Additionally, constraints on states, inputs and outputs
are present imposing further complications on the controller design, since the
underlying mathematical problems are intrinsically complex and hard to solve.

Recently, we have proposed in [9, 10] a systematic procedure for the design
of the DTC switching table by reformulating the control problem as a Model
Predictive Control (MPC) [8] problem for a two- and a three-level inverter.
Modelling the DTC drive as a hybrid system, introducing integer variables for
the inverter switch positions that represent the manipulated variables of the
control problem and expressing the control objectives in a cost function led to
a constrained finite time optimal control problem. By solving the underlying
optimization problem on-line and comparing the results with the behavior of
ABB’s ACS6000 drive [1] featuring a three-level inverter, we have demonstrated
a potential performance improvement in the range of 20 %. Subsequently, moving
towards the practical implementation of the method, we have pre-computed
off-line the optimal control problem for all feasible states and thus derived the
explicit state-feedback control law. The latter was done for a DTC drive featuring
a two-level inverter and for a specific operating point.

Nevertheless, the complexity of the derived state-feedback controller pro-
hibits the practical implementation on the currently employed controller hard-
ware. On the other hand, two observations suggest the existence of a low com-
plexity controller resulting from a systematic design procedure. Firstly, albeit
their very simple controller structure, the existing DTC schemes have proven
to yield a satisfactory control performance. Secondly, the post analysis of the
derived state-feedback control law reveals a simple and robust pattern in the
solution to the optimal control problem.

These observations have motivated the control scheme presented in this paper
which is based on the following fundamental property of DTC. The control
objectives only weakly relate to optimality but rather to feasibility, in the sense
that the main objective is to find a control input that keeps the controlled
variables within their bounds, i.e. a control input that is feasible. The second,
weaker objective is to select among the set of feasible control inputs the one that
minimizes the average switching frequency. The latter can be approximated by
the number of switch transitions over the (short) horizon.

We therefore propose an MPC scheme based on feasibility with a prediction
horizon N and an internal model of the DTC drive for the predictions. We
propose to switch only at the current time-step and to disregard switching within
the prediction horizon, which is equivalent to a move blocking strategy. This
greatly reduces the number of control input sequences from 8N to 8 and allows
us to evaluate a small number of input sequences by moving forward in time. For
each input sequence, we determine the number of steps the controlled variables
are kept within their bounds, i.e. remain feasible. Next we define the number
of switch transitions divided by the number of predicted time-steps an input



Direct Torque Control for Induction Motor Drives 3

ua = +1

ub = −1

uc = +1

ias

ibs

ics

IM

+Vdc

2

−Vdc

2

a b c

(a) The equivalent representation of a three-phase
two-level inverter driving an induction motor

d

q
(−1, 1,−1) (1, 1,−1)

(1,−1,−1)

(1,−1, 1)(−1,−1, 1)

(−1, 1, 1)

(1, 1, 1) (−1,−1,−1)

(b) The voltage vectors on the
dq plane with switch positions

Fig. 1. Physical setup and voltage vectors

remains feasible as a cost function emulating the switching frequency. In a last
step, the control input is chosen that minimizes the cost function. We refer to this
concept as the Feasibility Approach. The simplicity of the control methodology
(with the only design parameter N) translates into a state-feedback control law
with a complexity that is of an order of magnitude lower than the one of its
counterpart obtained through solving the optimal control problem [9].

The paper is organized as follows. Starting with the derivation of a low com-
plexity piecewise affine model for the DTC drive in Section 2, we pose in Section 3
the control objectives. In Section 4, we first present the Feasibility Approach as
a control scheme that is evaluated on-line, and subsequently, we show how the
control problem can be pre-solved off-line and translated into a state-feedback
control law. Simulation results for the case of a two-level inverter are shown in
Section 5, while Section 6 summarizes the results and discusses the extendability
of the control approach to DTC drives featuring three-level inverters.

Due to the page limitation the paper had to be shortened by a few pages
(mostly Section 2). The full paper is available as technical report [4].

2 Modelling

2.1 Physical Setup

For the modelling of the DTC drive, all variables are transformed from the three-
phase system (abc) to an orthogonal dq0 reference frame with a direct (d), a
quadrature (q) and a zero (0) axis, that can be either stationary or rotating [6].
For the needs of this paper, the transformation of a vector ξabc = [ξa ξb ξc]

T

from the three-phase system to the vector ξdq0 = [ξd ξq ξ0]
T in the dq0 frame is

carried out through ξdq0 = P (ϕ)ξabc, where ϕ is the angle between the a-axis of
the three-phase system and the d-axis of the reference frame, and P (ϕ) is the
Park transformation [6].

An equivalent representation of a three-phase two-level inverter driving an
induction motor is shown in Fig. 1(a). At each phase, the inverter can produce
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two different voltages −Vdc

2 , Vdc

2 , where Vdc denotes the voltage of the dc-link.
The switch positions of the inverter can therefore be fully described using the
three integer variables ua, ub, uc ∈ {−1, 1}, where each variable corresponds to
one phase of the inverter, and the values −1, 1 correspond to the phase potentials
−Vdc

2 , Vdc

2 , respectively.
There are 23 = 8 different vectors of the form uabc = [ua ub uc]

T . Using
the Park transformation these vectors can be transformed into the dq0 frame
resulting in vectors of the form udq0 = [ud uq u0]

T . The latter are shown in
Fig. 1(b), where they are mapped into the (two-dimensional) dq plane. Even
though they are commonly referred to as voltage vectors, this term describes the
switch positions rather than the actual voltages applied to the machine terminals.

The dynamics of the squirrel-cage rotor induction motor are commonly mod-
elled in a dq0 reference frame that can be either stationary or rotating. The
standard modelling approach, which can be found in detail in [6], yields a 5-
dimensional nonlinear state-space model, that uses as state variables the d- and
q-components of the stator and rotor flux linkages per second ψds , ψqs , ψdr and
ψqr, respectively, and the rotor’s rotational speed ωr. The 0-axis components are
neglected, since they do not contribute to the electromagnetic torque and are
decoupled from the dynamics in the d- and q-axis. The model parameters are
the stator and rotor resistances rs and rr, the stator, rotor and mutual induc-
tive reactances xls, xlr and xm, respectively, the inertia constant H expressed
in seconds, and the mechanical load torque Tℓ.

In this standard dynamical model of the induction motor, the saturation of
the machine’s magnetic material, the changes of the rotor resistance due to the
skin effect and the temperature changes of the stator resistance are ignored. A
more elaborate presentation of the induction motor’s modelling procedure is out
of the scope of this paper. For details, the reader is referred to [6].

2.2 Low Complexity Modelling

In [9, 10], we have derived a low-complexity model of the DTC drive taking into
account that the stator flux dynamics are significantly faster than the dynamics
of the rotor flux and the rotational speed, and that the length of the stator flux
vector and the electromagnetic torque are invariant under a rotation of the flux
vectors. This model has the state vector

x(k) =
[

ψϑ
ds(k) ψ

ϑ
qs(k) cos(ϕ(k))

]T
, (1)

where ψϑ
ds(k) and ψϑ

qs(k) denote the d- and q-component of the rotated and
mapped stator flux vector, and ϕ(k) captures the position of the rotating refer-
ence frame with ϕ(k + 1) = ϕ(k) + ωrTs. The output vector

y(k) =
[

Te(k) Ψ
2
s (k)

]T
(2)

comprises the electromagnetic torque and the squared length of the stator flux
vector, and the input vector is composed of the integer variables ua, ub and uc

u(k) = uabc(k) =
[

ua(k) ub(k) uc(k)
]T

∈ {−1, 1}3 . (3)
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For a summary of the low-complexity modelling, the reader is referred to [4],
whereas the complete modelling can be found in [9].

2.3 Piecewise Affine Model

In a subsequent step, we have computed in [9] a piecewise affine (PWA) model
for a DTC drive featuring a two-level inverter. PWA models [12] are defined by
partitioning the state-space into polyhedra and associating with each polyhedron
an affine state-update and output function

x(k + 1) = fj(k)(x(k), u(k)) (4a)

y(k) = gj(k)(x(k)) (4b)

with j(k) such that
[

x(k)
u(k)

]

∈ Pj(k), (4c)

where x(k), u(k), y(k) denote at time k the real and binary states, inputs and
outputs, respectively, the polyhedra Pj(k) define a set of polyhedra {Pj}j∈J

on the state-input space, and the real time-invariant functions fj(k) and gj(k)

are affine in the states and inputs, with j(k) ∈ J , J finite. For simplicity, we
will later drop the index j(k) and (4c), and use x(k + 1) = f(x(k), u(k)) and
y(k) = g(x(k)) to denote the PWA system (4). Note that the PWA system (4)
has no throughput, i.e. y(k) is independent of u(k).

To derive such a PWA model, all nonlinearities need to be replaced by PWA
approximation over a bounded set of (feasible) states X 0. The set X 0 can be
easily determined by translating the output hysteresis bounds imposed by the
control objectives into constraints on the state-space. Introducing the lower and
upper bounds on the electromagnetic torque Te,min and Te,max, respectively, and
noting that in the low-complexity model the torque is a linear expression of the
second state, the torque bounds can be directly translated into linear bounds on
x2(k)

D

xmψ
ϑ
dr

Te,min ≤ x2(k) ≤
D

xmψ
ϑ
dr

Te,max , (5)

where ψϑ
dr is equal to the length of the rotor flux, which is treated as a parameter

in the low-complexity model. Similarly for the stator flux, its lower and upper
bounds Ψ2

s,min and Ψ2
s,max turn into the quadratic state constraint

Ψ2
s,min ≤ x2

1(k) + x2
2(k) ≤ Ψ2

s,max. (6)

To account for measurement noise and small disturbances causing the torque or
the stator flux to slightly violate the imposed bounds, we relax (5) and (6) by
20 % of the corresponding bound width.

The bounds on the third state are derived from the angle ϕ(k). To ensure
that the model remains feasible for at least N time-steps when starting with a
ϕ(k) close to π

3 , the bounds on ϕ(k) are set to 0 ≤ ϕ(k) ≤ π
3 + NωrTs, which

translate into the following bounds on x3(k)

cos(
π

3
+NωrTs) ≤ x3(k) ≤ 1 . (7)
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Summing up, the constraints (5), (6) and (7) define the set of states X 0 for which
the PWA model is to be defined. Thus, the nonlinearities of the DTC drive need
to be approximated for x ∈ X 0 as shown in [9, 10].

Starting from a model description in the HYbrid Systems DEscription Lan-
guage Hysdel [15], and fixing the operating point, namely the parameters ωr

and ψϑ
dr, the model can be transformed into PWA form with the mode enumera-

tion algorithm [5]. This procedure yields a PWA model defined on a polyhedral
partition with 48 polyhedra in the six-dimensional state-input space.

3 Control Problem

The most prominent control objective concerning the induction motor is to keep
the electromechanical torque within bounds around its reference. In order to
avoid the saturation or demagnetization of the motor, the amplitude of the stator
flux has to be kept between certain pre-specified bounds around the reference
which are in general time-invariant. The control objective concerning the inverter
is to minimize the average switching frequency.

4 Feasibility Approach

Traditionally, based on the imposed bounds, the next voltage vector to be applied
to the induction motor is selected by evaluating a look-up table every Ts = 25µs.
The goal of this paper is to replace the look-up table by a new DTC scheme that
is based on a systematic design procedure. This controller needs to address the
above formulated objectives, i.e. to minimize the average switching frequency
while keeping the controlled variables (torque and length of the stator flux)
within the given bounds.

Similar to [9, 10], this controller is based on predictive control with a receding
horizon policy. Minimizing the average switching frequency leads to a prediction
horizon with an infinite number of steps. As such a problem in the context
of hybrid systems is computationally not tractable, we need to approximate
this objective. In [9, 10], we have done this by restricting the prediction horizon
N to a small number of steps (three or four) and by formulating an objective
function that postpones switching and penalizes the violation of the bounds using
soft constraints. In particular, we have allowed for switch transitions within the
prediction interval. Dynamic programming [3] allowed us to compute off-line the
explicit state-feedback control law for the whole state-space.

4.1 On-line Computation of the Control Input

On the other hand, the underlying optimization problem of the above stated
control problem is not so much based on optimality but rather on feasibility,
meaning that the controlled variables have to be kept within their bounds, i.e.
feasible. This insight greatly simplifies the control problem. Furthermore, we
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propose to switch only at the current time-step k and to disregard switching
within the prediction horizon, which is equivalent to a move blocking strategy.
This greatly reduces the number of control input sequences from 8N to 8 and
allows us to evaluate a small number of control sequences by moving forward
in time. As a result, dynamic programming moving backwards in time becomes
obsolete.

More formally, let u(k − 1) denote the last voltage vector. If u(k − 1) is
also feasible at time-instant k, i.e. all controlled variables are predicted to lie
within their bounds at time-instant k + 1, a reasonable choice is to apply it
again, i.e. u(k) = u(k − 1). If not, however, the controller must choose another
voltage vector. For each of the remaining seven voltage vectors, one can easily
compute through open-loop predictions the number of time-steps this voltage
vector would keep the controlled variables within their bounds. This step reduces
the optimal control problem to a feasibility problem. The voltage vector is chosen
that minimizes the average switching frequency over the prediction interval,
i.e. the number of switch transitions over the number of time-steps, thus re-
introducing the notion of optimality. This control concept, to which we refer as
the Feasibility Approach, is summarized in Algorithm 1, where f and g refer
to the PWA model (4). An output vector y(k) is said to be feasible, if the
corresponding bounds are met, and U = {−1, 1}3 denotes the set of available
voltage vectors.

Algorithm 1

function u(k) = Algo1 ( x(k), u(k − 1) )

x(k + 1) = f(x(k), u(k − 1))

if y(k + 1) = g(x(k + 1)) feasible

u(k) = u(k − 1)

else

for all u(k) ∈ U \ u(k − 1)

nu = −1

repeat

nu = nu + 1

x(k + nu + 1) = f(x(k + nu), u(k))

until
(

y(k + nu + 1) = g(x(k + nu + 1)) infeasible
)

or
(

nu = N
)

endfor

u(k) = arg minu(k)
||u(k)−u(k−1)||

nu

endif

Compared to MPC, this control policy is by definition significantly simpler,
as only eight control sequences (or control strategies) need to be compared with
each other. Unlike in MPC, switch transitions within the prediction interval are
not considered, and can only be performed at the current time-instant k. Fur-
thermore, the length of the prediction horizon is time-varying, ranging from one
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Fig. 2. Core and ring for u(k − 1) = [1 − 1 − 1]

step to 10 or even 20 steps. As the next section will show, an explicit form of the
proposed controller can be computed easily. Even more important, the explicit
form has a low complexity but maintains or improves the control performance
with respect to MPC.

4.2 Off-line Computation of the State-feedback Control Law

We restrict the computation of the explicit state-feedback control law to the set
of states X 0, which we have obtained by relaxing the bounds on the torque and
the flux by 20 %. Furthermore, we fix the operating point, namely the rotor speed
ωr and the length of the rotor flux ψϑ

dr, and set the lower and upper bounds on
the outputs (torque and stator flux). Next, we derive the PWA model defined
on X 0. Rewriting (5) and (6), let C denote the set of states whose corresponding
outputs are feasible

C = {x ∈ X 0 |

[

Te,min

Ψ2
s,min

]

≤ g(x) ≤

[

Te,max

Ψ2
s,max

]

, (8)

where we have replaced the quadratic expression in (6) by the PWA approxima-
tion for the stator flux.

Before presenting the computation of the state-feedback control law in three
stages, we introduce the following notation. Let n denote the time-step within
the prediction horizon N , Xn

feas the set of states at time-step k+n corresponding
to feasible outputs y(k + ℓ) for all ℓ ∈ {1, . . . , n}, Xn

infs the set of states at time-
step k+n with feasible outputs y(k+ ℓ) for all ℓ ∈ {1, . . . , n− 1}, but infeasible
outputs y(k + n), and Qn

u the set of states at time-step k that keep the outputs
for n time-steps feasible when applying the voltage vector u.

Stage I First, we determine the set of states x(k) ∈ X 0 for which the controlled
variables are feasible at time-step k + 1 when applying u(k) = u(k − 1). We
denote this set of states as the core

Qc
u = {x ∈ X 0 | f(x, u) ∈ C} , (9)
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Fig. 3. First step of Algorithm 2 in the x1x2 plane for u(k) = [1 − 1 − 1]

and its complement in X 0 as the ring

Qr
u = X 0 \ Qc

u . (10)

Example 1 To visualize the algorithm, consider as an example a two-level inverter
driving an induction machine with the rated voltage 3.3 kV and the rated real
power 1.587 MW. All parameters can be found in [9] in Tables 3 and 4. The
operating point is given by the rotor speed ωr = 0.8 p.u., the load torque Tℓ =
0.8 p.u., the torque bounds Te,min = 0.72 p.u. and Te,max = 0.88 p.u., and the
flux bounds Ψ2

s,min = 0.82 p.u. and Ψ2
s,max = 1.04 p.u.. After deriving the PWA

model on X 0 (enlarged by 20 % as in Section 2.3), and determining the set C,
the core and the ring can be easily computed as shown in Fig. 2 for the voltage
vector u(k − 1) = [1 − 1 − 1]. This operation takes on a Pentium IV roughly
1 s. �

Stage II For each new voltage vector u(k) ∈ U \u(k−1), the following procedure
is performed for the initial set1 X 0. Initially, we set n = 0. Next, we map the
polyhedra Xn from time-step k + n to k + n + 1 yielding Xn+1. The states
corresponding to infeasible outputs form the set Xn+1

infs . Consequently, we map
Xn+1

infs back to the time-step k and associate with them the number of time-steps
n. We denote these polyhedra by Qn

u, where u corresponds to the chosen voltage
vector u(k), and n denotes the number of time-steps this voltage vector u(k)
can be applied to the set of states before any of the outputs violates a bound.
If there remain any feasible states, we move one time-step forward in the future
by increasing n by one and repeat the above procedure.

1 Conceptually, this stage of the algorithm should be initialized with the ring Qr

u rather
than X 0. Let us note though that since the facets of the initial set are mapped forward
and backward in time, in the worst case, the complexity of the algorithm both in
terms of the computation time and the number of resulting polyhedra {Qn

u}
N

n=0 is
exponential in the number of facets of the initial set. Therefore, as X 0 is by definition
a very simple polytopic set with only a few facets, whereas the ring is a non-convex
set with possibly many facets, we initialize Algorithm 2 with X 0 rather than the
ring.
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Fig. 4. Second step of Algorithm 2 in the x1x2 plane for u(k) = [1 − 1 − 1]

This yields for each new voltage vector a polyhedral partition of the ring
{Qn

u}
N
n=0, where each polyhedron is associated with a unique number indicating

for how many time-steps the respective voltage vector can be applied before any
of the controlled variables violates a bound.

Next, the algorithm is summarized, where the two subfunctions mapForw and
mapBack are affine transformations of polyhedra using the PWA model (4) for
a fixed voltage vector u(k). Specifically, mapForw yields Xn+1 = {f(x, u) | x ∈
Xn, u = u(k)}, and mapBack yields Qn

u = {x | (fu ◦ . . . ◦ fu)(x) ∈ Xn+1
infs }, where

we have set fu(x) = f(x, u) and concatenated fu n times. Note that mapForw

maps a set of states by one time-step forward in time, whereas mapBack maps a
set of states by n time-steps backwards. The subscript feas (infs) refers to sets
of states corresponding to feasible (infeasible) outputs.

Algorithm 2

function {Qn
u}

N
n=0 = Algo2 ( C, X 0, u, N )

n = 0

while Xn 6= ∅ and n < N

Xn+1 = mapForw ( Xn, u )

Xn+1
feas = Xn+1 ∩ C

Xn+1
infs = Xn+1 \ Xn+1

feas

Qn
u = mapBack ( Xn+1

infs , u )

Xn+1 = Xn+1
feas

n = n+ 1

endwhile

Qn
u = mapBack ( Xn, u )
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n=0 of Algorithm 2 for u(k) = [1 −1 −1]
and N = 4, where the colors correspond to the number of steps n

Example 1 ( continued) Setting N = 4, we proceed with Example 1. Fig. 3
visualizes the first step (n = 0) of Algorithm 2 in the x1x2 plane, where the
same scaling is used for all three figures. Starting with the initial set of states
X 0 in Fig. 3(a), the voltage vector u(k) = [1 − 1 − 1] maps X 0 from time-step
k to k + 1 as shown in Fig. 3(b). The set X 1 comprises two parts. X 1

feas (X 1
infs)

contains the states corresponding to feasible (infeasible) outputs. This set X 1
infs

is consequently mapped back from time-step k + 1 to k resulting in Q0
u and

indicating that this set is zero-step feasible for the chosen u(k). Furthermore, we
set X 1 = X 1

feas.
The second step (n = 1) is shown in Fig. 4 starting from the set X 1 at

time-step k + 1 in Fig. 4(a). Applying u(k) = [1 − 1 − 1] to this set maps it
from time-step k+1 to k+2 as shown in Fig. 4(b). Again, X 2

feas (X 2
infs) contains

the states corresponding to feasible (infeasible) outputs. The states in X 2
infs are

mapped back for two steps from k+2 to k yielding Q1
u which is shown in Fig. 4(c)

and refers to states which are one-step feasible for u(k).
Repeating the above procedure for n = 2, 3, 4 and collecting the sets Qn

u

yields the polyhedral partition {Qn
u}

4
n=0 shown in Fig. 5. The outer polyhedra

correspond to outputs that are feasible for zero time-steps when applying u(k) =
[1 −1 −1], while the inner polyhedra are feasible for one, two, three and four time-
steps as x2(k) is increasing. Note that {Qn

u}
4
n=0 is by construction a polyhedral

partition of the set X 0.
The computation time for the second stage for the given example is approx-

imately 2 min on a Pentium IV. �

Summing up, Stages I and II yield a semi-explicit control law that is eval-
uated by following Algorithm 1, with the main difference that the number of
steps nu is not calculated by mapping operations but rather by set membership
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tests evaluating if the given state lies in the respective polyhedron. Specifically,
if for the given u(k − 1), the state x(k) lies in the core, reapply the last volt-
age vector again. Else determine for each new voltage vector the polyhedron in
{Qn

u}
N
n=0 containing x(k), evaluate the associated number of time-steps nu, and

find the voltage vector u(k) with the lowest cost as defined in Algorithm 1. This
is formalized in Algorithm 3.

Algorithm 3

function u(k) = Algo3 ( x(k), u(k − 1) )

if x(k) ∈ Qc
u

u(k) = u(k − 1)

else

for all u(k) ∈ U \ u(k − 1)

determine nu such that x(k) ∈ Qnu

u

endfor

u(k) = arg minu(k)
||u(k)−u(k−1)||

nu

endif

Regarding the computational burden for the on-line computation of the con-
trol input, in the worst case, one core needs to be evaluated and the seven
polyhedral partitions of U \ u(k − 1) which feature in general a low number of
polyhedra.

Stage III In the third stage we pre-compute Algorithm 3 and derive the fully ex-
plicit control law as a function of the last voltage vector u(k−1) and the current
state x(k). For u(k − 1) ∈ U , we evaluate for each polyhedron in {Qn

u}
N
n=0 the

cost and associate with it the voltage vector u(k). Next, the core Qc
u is added

with zero cost and the voltage vector u(k) = u(k − 1). Finally, we compare the
cost expressions and iteratively remove (parts of) polyhedra with inferior costs2.
A detailed exposition and analysis of this algorithm can be found in [2]. This
yields one polyhedral partition, where each polyhedron refers to a voltage vector
u(k) (and not to a number of time-steps). This procedure is repeated for all the
eight former voltage vectors u(k− 1) yielding eight different fully explicit state-
feedback control laws. As a result, the computational burden of evaluating the
control law is reduced, as u(k − 1) directly defines the one polyhedral partition

2 As the cost expressions used in Algorithms 1 and 3 are rational, where the nominator
(in the case of a two-level inverter) is restricted to the integers two, four and six,
and the denominator to 0, . . . , N , the costs take only a few different values. This
increases the possibility that at a given time two or more voltage vectors have the
same associated cost leading to ambiguities in the choice of the next voltage vector. In
such cases, we suggest to remove the ambiguity by imposing an additional heuristic
selection criterion. Examples for such rules are to select the vector that keeps the
controlled variables feasible for the maximal number of steps, or to favor zero vectors.
Obviously, these ambiguities occur less frequently when the maximal horizon N is
increased.
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Fig. 6. Polyhedral partitions of the state-feedback control law resulting from Stage III
for u(k − 1) = [1 − 1 − 1], where each color corresponds to a voltage vector u(k) ∈ U

that needs to be searched through in order to obtain u(k). However, the mem-
ory requirements are higher since the polyhedral partitions of the fully explicit
control law are in general more complex than the one of the semi-explicit control
law.

Example 1 ( continued) Applying Stage III to Example 1 yields for u(k − 1) =
[1 − 1 − 1] the explicit control law shown in Fig. 6. Each color corresponds to
a voltage vector u(k) ∈ U . In particular, the large polyhedron in the center of
the three-dimensional state space refers to u(k) = u(k− 1). The explicit control
law comprises a total of eight control laws similar to Fig. 6, where each one
corresponds to a formerly applied voltage vector u(k − 1) ∈ U .

The computation was performed using the function mpt removeOverlaps of
the Multi-Parametric Toolbox [7]. The computation time was 15 min. �

5 Simulation Results

The simulation results presented in this section were derived for a DTC drive
featuring a two-level inverter. The parameters of the drive are the same as in [9],
and the operating point we consider is as in Example 1. As mentioned before,
the only design parameter which influences the calculation of the state-feedback
controller and consequently the performance of the drive, is the maximal horizon
N over which the feasibility of each voltage vector is considered.

In the following, we evaluate the performance of the proposed Feasibility
Approach in terms of the average inverter switching frequency. As a bench-
mark, we employ the Optimal DTC scheme presented in [9]. The corresponding
state-feedback controller [9], which was derived for a prediction horizon of two
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N switching total number of polyhedra total number of polyhedra

frequency [Hz] in semi-explicit control law in fully explicit control law

2 632 292 1192

3 606 440 1891

4 572 625 2226

5 540 860 2907

6 510 1051 3362

7 495 1256 3737

8 547 1467 4443

9 574 1694 4758

Table 1. Performance and complexity of the state-feedback control law

and features a total of 47’000 polyhedra, yields for the above setup an average
switching frequency of 525 Hz. Note that in the Optimal DTC scheme switching
is allowed at every time-step within the prediction horizon, and that the com-
parison is based on the same case study as in [9]. In particular, the same drive
parameters, operating point and bounds imposed on the torque and the stator
flux are used.

The results obtained with the Feasibility Approach are summarized in Ta-
ble 1 for eight different values of the maximal horizon N . For the horizon used
in [9], i.e. N = 2, the switching frequency is significantly increased with respect
to the benchmark. This is to be expected, since the move blocking strategy (no
switching of the control input within the horizon) reduces the degrees of freedom
of the control algorithm. However, setting the maximal horizon to N = 5 yields
a switching frequency that is comparable to the one obtained with the Optimal
DTC approach, and the choices of N = 6 and N = 7 reduce the switching fre-
quency. Most important, this performance improvement is achieved despite the
complexity reduction of the state-feedback controller by an order of magnitude
with respect to its Optimal DTC counterpart.

Focusing on the case of N = 7, the relative switching frequency improvement
with respect to the benchmark amounts to 5.7 %. Furthermore, we should point
out that using the Feasibility Approach the bounds on the torque and the stator
flux are very strictly respected. The Optimal DTC scheme, however, allows for
small violations of the bounds; the degree of the violations can be adjusted
using a design parameter (penalty on the soft constraints for the bounds) that
affects the switching frequency. As tightening the bounds increases the switching
frequency, the expected performance improvement is even more pronounced.

For completeness, one should note that the switching frequency does not
monotonically decrease with N . This phenomenon has also been observed with
the Optimal DTC scheme and is currently under investigation. In particular,
a further increase of the horizon to N = 8 or N = 9 leads to a performance
deterioration with respect to N = 7.
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6 Conclusions and Outlook

In this paper, we have presented the derivation and performance analysis of
a state-feedback controller based on MPC for the DTC problem of induction
motors driven by a two-level inverter. The proposed controller features a signif-
icantly lower complexity (by an order of magnitude) than its counterpart in [9]
for the same fixed operating point. It is derived through a simple and system-
atic design procedure and maintains and even improves the favorable control
performance properties obtained by the use of predictive control.

The controller presented in this paper could be extended in the following
two ways. Firstly, by considering changes in the operating point. This necessi-
tates the parametrization of the drive’s PWA model over the rotational speed
ωr and the torque and flux bounds. Concerning the bounds, only one parameter
is needed for the median of the torque bounds. The flux bounds and the width
of the torque bounds can be assumed to be in general time-invariant. Obviously,
the complexity of the resulting controller would be increased. Yet it is to be ex-
pected that the low complexity with respect to an accordingly extended optimal
controller in [9] is maintained.

Secondly, this paper can be extended by applying the presented method to
a DTC drive with a three-level inverter. As a result, two additional control
objectives, namely the regulation of the inverter’s neutral point potential and
the even distribution of the switching effort between the upper and the lower
half of the inverter, arise. A straightforward approach would be to accurately
model the nonlinear dynamics of the neutral point potential. To avoid such a
substantially more complex PWA model, a favorable approach is to refrain from
deriving the fully explicit controller and to rather use the semi-explicit realization
in combination with time-varying weights on the voltage vectors. An outer loop
should monitor the neutral point potential and set the weights accordingly to
favor the selection of voltage vectors that keep the potential within given bounds
around zero. The same approach can be also used for the even distribution of
the switching effort. Since these control objectives are roughly and heuristically
defined, they do not require to be strictly met thus rendering the above approach
a sufficient approximation.

The full version of this paper is available as technical report [4] extending
the modelling in Section 2.
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