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Abstract—This paper focuses on Direct Torque Control (DTC)
for three-phase AC electric drives. A novel model predictive
control scheme is proposed that keeps the motor torque, the
stator flux and (if present) the inverter’s neutral point potential
within given hysteresis bounds while minimizing the switching
frequency of the inverter. Based on an internal model of the
drive, the controller predicts several future switch transitions,
extrapolates the output trajectories and chooses the sequence
of inverter switch positions (voltage vectors) that minimizes the
switching frequency. The advantages of the proposed controller
are twofold. Firstly, as underlined by the experimental results in
the second part of this paper, it yields a superior performance
with respect to the industrial state of the art. Specifically, the
switching frequency is reduced by up to 50 % while the torque
and flux are kept more accurately within their bounds. Moreover,
the fast dynamic torque response is inherited from standardDTC.
Secondly, the scheme is applicable to a large class of (three-phase)
AC electric machines driven by inverters.

Index Terms—AC motor drives, model predictive control,
direct torque control, power electronics

I. I NTRODUCTION

In adjustable speed AC drives DC-AC inverters are used to
drive three-phase AC machines as variable frequency voltage
or current sources. One of the various methods used for
controlling the machine’s torque and speed is Direct Torque
Control (DTC) [1], [2], [3], [4]. Exploiting the motor’s fast
stator flux dynamics, DTC directly manipulates the stator
flux vector such that the desired torque (and magnitude of
the stator flux) is achieved by choosing an inverter switch
combination that provides the appropriate phase voltages to
the motor windings. In state of the art drives, this choice is
made e.g. everyTs = 25µs using a pre-designed switching
table that – depending on the particularities of the application
– addresses a number of different control objectives. These
primarily concern the motor. More specifically, the electro-
magnetic torque and the stator flux need to be kept within
pre-specified hysteresis bounds. In high power applications,
where often neutral point clamped (three-level) inverterswith

Manuscript received on April 15, 2008. This work was done at the
Automatic Control Laboratory, ETH Zurich, Switzerland. This project was
supported by ABB Switzerland Ltd. and by the two European Commission
research projects IST-2001-33520Control and Computation (CC) and FP6-
IST-511368Hybrid Control (HYCON).

T. Geyer is currently with the Department of Electrical and Computer
Engineering, The University of Auckland, Auckland, New Zealand (e-mail:
t.geyer@ieee.org).

G. Papafotiou is now with ABB Corporate Research, Daettwil,Switzerland
(e-mail: georgios.papafotiou@ch.abb.com).

M. Morari is with the Automatic Control Laboratory, ETH Zurich, Physik-
strasse 3, 8092 Zurich, Switzerland (phone: +41 44 632 7626;fax: +41 44
632 1211; e-mail: morari@control.ee.ethz.ch).

Copyright (c) 2008 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Integrated Gate Commutated Thyristors (IGCT) are used, the
control objectives are extended to the inverter and includethe
balancing of the inverter’s neutral point.

In this paper, we present a DTC scheme that yields a signif-
icant performance improvement with respect to the state of the
art without requiring excessive computational power to enable
the implementation on (already existing) DTC hardware. Such
a control scheme can be derived by adopting the principles of
constrained optimal control with a receding horizon policy,
i.e. Model Predictive Control (MPC) [5]. Specifically, the
hysteresis bounds are inherited from standard DTC, whereas
the DTC switching table is replaced by the following online
optimization. Over a shortswitching horizon all admissible
switching sequences are considered. Based on the measured
(or estimated) machine quantities, for each switching sequence
the evolution of the torque, stator flux and neutral point
potential is predicted, using a nonlinear discrete-time model
of the drive. To emulate a longoutput horizon, the predicted
trajectories of the torque, flux and neutral point potentialare
extrapolated, and the number of time-steps is determined for
which these quantities are kept within their hysteresis bounds.
For each switching sequence an approximation of the average
switching frequency is computed that is given by the total
number of switch transitions in the sequence divided by the
time duration of the extrapolated trajectory. Minimizing the
switching frequency over all switching sequences yields the
optimal sequence of switch transitions. Of this sequence, only
the first step is applied to the drive. At the next sampling
instant this procedure is repeated with new measurements
thus establishing a receding horizon policy, as this method
is commonly referred to.

This control approach carries several important advantages.
Introducing additional control objectives (like the balancing
of the switching power losses) is straightforward. As all
computations are performed on-line, all quantities may be
time-varying including model parameters, set points and hys-
teresis bounds. Even more importantly, the controller can be
directly applied to a large class of three-phase AC drive. More
specifically, induction machines (both squirrel-cage and ring-
rotor type), synchronous and permanent magnet machines can
be addressed, as well as inverter topologies such as two-,
three- or five-level inverter. Yet, to simplify the exposition
of the new control scheme, we focus in this paper on a
specific application, where a neutral point clamped (three-
level) voltage source inverter drives a squirrel-cage induction
motor.

The major benefit of this controller, however, is its supe-
rior performance in terms of the switching frequency. For
ABB’s well-established three-level voltage source inverter
ACS 6000 [6] with a squirrel-cage induction motor, the pro-
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posed model predictive DTC (MPDTC) scheme reduces the
switching frequency over the whole range of operating points
by up to 50 %, with an average reduction of 25 %, while better
respecting the torque and flux hysteresis bounds. Notably, this
result is independent from the power rating of the machine,
which was varied from a few kVA to several MVA. All per-
formance evaluations were carried out by applying the control
scheme to a very accurate and detailed Matlab/Simulink model
of the drive, which was provided by ABB to very closely
resemble a physical drive and ensure a simulation set-up that
is as realistic as possible. Experimental results shown in the
second part of this paper confirm these simulation results to
be very accurate.

However, MPC schemes are inherently computationally
demanding as an underlying optimization problem needs to
be solved. Yet, as will be illustrated, the proposed control
approach requires a computational effort that is greatly reduced
with respect to standard MPC approaches. Given the strong
performance and design advantages, such an approach can be
considered to be cost effective especially in the case of large
drives operating in the MW region. In particular, a reduction
of the switching frequency directly translates into reduced
losses and therefore into energy and cost savings (in terms
of operation and installation), which are significant in high
power applications.

The proposed control scheme can be considered as a
combination of the two DTC concepts [7], [8] we have
proposed earlier. Specifically, the notion of optimality and
the approximation of the average switching frequency by the
number of switch transitions over a short prediction horizon
were introduced in [7]; the concept of the evaluation forward in
time is inherited from [8]. The key features of this new control
scheme are the extrapolation, the fact that all computations
are performed on-line (in [7], [8] we have pre-computed the
control law off-line and stored it in a look-up table), the
admissible switching sequence, and the use of a nonlinear
(rather than a piecewise affine [7], [8]) prediction model for
the controller synthesis.

As shown in [9], [10], the research community has recently
started to consider model predictive control schemes as a way
of introducing performance improvements in electrical drives.
Even though DTC itself is widely interpreted as a predictive
control strategy [11], [12], [13], [14], [15], it predicts only
one step (one switch transition) ahead, and it lacks an internal
model, a cost function and the notion of optimality, which
are fundamental elements of an MPC scheme. Some of these
elements are present in the more recent approaches [16], [17],
[18], [19], [20], [21], [22], [23]. Yet, these schemes differ in
several significant aspects from the control scheme proposed
in this paper:

1) Except for [20] and possibly also [21], the prediction
horizon is restricted to one and the usage of a larger
(control) horizon combined with a receding horizon
policy is not mentioned.

2) The DTC problem is formulated as a reference tracking
problem, namely the formulated control problem tries
to minimize the deviation of the torque and stator flux
from their references. There are no hysteresis bounds on
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Fig. 1: Equivalent representation of a three-level voltagesource inverter
driving an induction motor (IM)

these variables.
3) Except for [17], [18], [21], [22], [23] a modulator is

included in the control loop greatly simplifying the
control problem. Thus, unlike the DTC philosophy, the
switch positions are not directly chosen by the controller.

4) Only two-level voltage source inverters are considered
with [13] and [23] being an exception.

5) The cost function does not emulate the switching fre-
quency of the inverter. In combination with reference
tracking and the limited number of voltage vectors (for
a two-level inverter), a high switching frequency is to be
expected. Particularly for the high power applications
in the MVA range considered in this paper, such an
approach does not seem to be applicable. [23] is an
exception to this by also aiming at minimizing the
switching frequency.

6) Linear (or locally linearized) models are used as pre-
diction models. In particular for three-level inverters
that include a neutral point potential with its nonlinear
dynamical behavior, linear models tend to be inaccurate.
Moreover, in [16], [20], [21], the cross couplings be-
tween the d and the q-axis are neglected in the machine
model. Similarly, [22], [23] consider only a resistive
inductive load with a back EMF rather than an electric
motor.

Here, due to the space limitation, we have provided only
an overview of the literature on predictive control of motor
drives that is most related to our approach. A coverage of the
academic contributions to the DTC problem can be found in
[24, Section 5.6] and [4].

The paper is structured as follows. Section II summarizes
the physical model of the DTC drive, while Section III
reformulates this model such that it can be used as prediction
model in the MPC scheme. After stating the control problem
in Section IV, the model predictive DTC scheme is detailed
in Section V. This controller is available in two forms with
control (switching) horizonsN > 1 andN = 1, which differ
mostly in the switching sequences’ degree of freedom and the
handling of the switching constraints. The control algorithms
and the related computations are discussed in Section VI.
Simulation results using ABB’s simulation setup are presented
in Section VII, and conclusions are drawn in Section VIII.
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II. PHYSICAL MODEL

Throughout the document, we will use the normalized time
scale t with one time unit corresponding to1/ωb seconds,
whereωb is the base angular velocity. Additionally, we will
useξ(t), t ∈ R, to denote continuous-time variables, andξ(k),
k ∈ N, to denote discrete-time variables with the sampling
intervalTs = 25µs.

All variables ξabc = [ξa ξb ξc]
T in the three-phase system

(abc) are transformed toξαβ0 = [ξα ξβ ξ0]
T in the orthogonal

αβ0 stator reference frame through

ξαβ0 = P ξabc . (1)

Using a stator reference frame and aligning theα-axis with
the a-axis, the following transformation matrix is obtained

P =
2

3





1 − 1

2
− 1

2

0
√

3

2
−

√
3

2
1

2

1

2

1

2



 . (2)

A. Physical Model of the Three-Level Inverter

The equivalent representation of a three-level voltage source
inverter driving an induction motor is shown in Fig. 1. At each
phase leg, the inverter can produce the three different voltages
−Vdc

2
, 0, Vdc

2
, where Vdc refers to the total dc-link voltage.

Let the integer variablesua, ub, uc ∈ {−1, 0, 1} denote the
switch position in each phase leg, i.e. the phase state, where the
values−1, 0, 1 correspond to the phase voltages−Vdc

2
, 0, Vdc

2
,

respectively. The27 vectors of the formuabc = [ua ub uc]
T

are transformed into the stator reference frame using (1). The
resulting vectors of the formuαβ0 = [uα uβ u0]

T are shown in
Fig. 2, where they are mapped into theαβ plane. The vectors
in theαβ plane are commonly referred to as voltage vectors,
whereas we will refer toua, ub, uc as the switch positions. The
actual voltages applied to the machine terminals are calculated
from

vαβ0 =
Vdc

2
P uabc . (3)

As can be seen in Fig. 1, the neutral point potentialυn

depends on the state of charge of the two dc-link capacitors
and is only affected when current is drawn directly from it,
i.e. when one of the switch positions is zero. Introducingυn

as a state, the neutral point potential is described by

dυn

dt
= −

1

2xC

(

(1− |ua|)isa + (1− |ub|)isb + (1− |uc|)isc

)

,

(4)
with the stator phase currentsisa, isb, isc and one of the two
symmetric capacitorsxC of the dc-link. Taking into account
that isa + isb + isc = 0 it is straightforward to derive

dυn

dt
=

1

2xC

|uabc|
T P−1 is,αβ0 , (5)

where is,αβ0 is the stator current expressed in the stator
reference frame, and|uabc| = [|ua| |ub| |uc|]

T is the compo-
nentwise absolute value of the inverter switch positions. For
more details about the nature of the neutral point potentialand
methods employed to tackle the related balancing problem, the
reader is referred to [25] and [26].

α

β

Fig. 2: Voltage vectors produced by a three-level inverter on the αβ plane,
the corresponding values of the switch positionsuabc (where ’+’ refers to
’1’ and ’-’ to ’-1’), and the admissible switch transitions (courtesy of ABB
ATDD, Switzerland)

In the inverter considered here – due to the fact that only
one di/dt snubber is available in the upper and the lower
half, respectively – not all switch transitions are possible, as
depicted in Fig. 2. As can be seen, from[1 1 1]T , for example,
switching is only possible to[0 1 1]T , [1 0 1]T or [1 1 0]T

(and not to any of the other 23 switch positions).

B. Physical Model of the Induction Motor

The dynamics of the squirrel-cage induction motor are
modelled in the statorαβ0 reference frame. Theα and β-
components of the stator and the rotor flux linkages per second
ψsα , ψsβ , ψrα andψrβ, respectively, and the rotor’s rotational
speedωr are used as state variables. The input voltagesvα and
vβ are the stator voltages in the stator reference frame. The
model parameters are the base angular velocityωb, the stator
and rotor resistancesrs and rr, the stator, rotor and mutual
reactancesxls, xlr andxm, respectively, the inertiaJ , and the
mechanical load torqueTℓ. Note that throughout this paper, if
not otherwise stated, we are using normalized quantities, and
the rotor quantities are referred to the stator circuit. Thestate
equations are [27]

dψsα

dt
= −rs

xrr

D
ψsα + rs

xm

D
ψrα + vα (6a)

dψsβ

dt
= −rs

xrr

D
ψsβ + rs

xm

D
ψrβ + vβ (6b)

dψrα

dt
= rr

xm

D
ψsα − rr

xss

D
ψrα − ωrψrβ (6c)

dψrβ

dt
= rr

xm

D
ψsβ + ωrψrα − rr

xss

D
ψrβ (6d)

dωr

dt
=

1

J

(

Te − Tℓ

)

, (6e)
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with

xss = xls + xm (7a)

xrr = xlr + xm (7b)

D = xssxrr − x2
m (7c)

and the electromagnetic torque

Te =
xm

D
(ψsβψrα − ψsαψrβ) . (8)

The length of the stator flux vector is given by

Ψs =
√

ψ2
sα + ψ2

sβ . (9)

Equations (6)–(9) represent the standard dynamical model
of an induction motor, where the saturation of the machine’s
magnetic material, the changes of the rotor resistance due
to the skin effect, and the temperature changes of the stator
resistance are neglected.

III. I NTERNAL MODEL OF THECONTROLLER

In this section, we derive a discrete-time model of the drive
that is suitable to serve as an internal prediction model for
the model predictive controller proposed in the next section.
The purpose of this model is to predict the trajectory of the
electromagnetic torque, the stator flux and the inverter neutral
point potential over several sampling intervals in an open-loop
fashion.

As the time-constant of the rotor speed dynamic exceeds
the length of the prediction interval by several orders of
magnitude, the rotor speed dynamics are neglected and the
speed is assumed to remain constant within the prediction
horizon. This allows us to treat the speed as a model parameter
rather than as a state thus removing (6e) from the motor model.

The model of the inverter has one state, namely the neutral
point potential, whose dynamic is described by (5) as a
function of |uabc| and is,αβ0. The α and β-components of
is,αβ0 are linear combinations of the stator and rotor flux
components (see e.g. [27] for details), and the 0-componentis
always zero1.

is,αβ0 =
1

D

[

xrrψsα − xmψrα xrrψsβ − xmψrβ 0
]T

.

(10)
We define the overall state vector of the DTC drive as

x =
[

ψsα ψsβ ψrα ψrβ υn

]T
, (11)

the switch positionsua, ub anduc as the input vector

u = uabc =
[

ua ub uc

]T
∈ {−1, 0, 1}3 , (12)

and the electromagnetic torque, the length of the stator flux
and the neutral point potential as the output vector

y =
[

Te Ψs υn

]T
. (13)

Combining the motor model (6a)–(6d), (8) and (9) with the
model of the inverter (5) and (10), and using forward Euler

1This follows from (1), taking into account thatisa + isb + isc = 0.

approximation approach the following discrete-time modelof
the DTC drive is derived.

x(k + 1) = (I +

[

A 0
0 0

]

Ts)x(k)+ (14a)

+

[

B1

0

]

Tsu(k) +

[

0
B2(x(k))

]

Ts|u(k)|

y(k) = g(x(k)) (14b)

In this model,I denotes the identity matrix andTs = 25µs is
the sampling interval. The definitions of the matricesA, B1

andB2, and the vectorg(k) can be found in the appendix. Note
that the zeros in (14) are vectors and matrices of appropriate
dimensions. In (14) the first two terms capture the motor
equations, while the third expression captures the dynamicof
the neutral point potential.

IV. CONTROL PROBLEM

The DTC control objectives are to keep the three output
variables, namely the torque, the length (or magnitude) of
the stator flux and the neutral point potential, within given
(hysteresis) bounds. At the same time, the average switching
frequency of the inverter

f = lim
N→∞

1

NTs

N
∑

ℓ=0

||u(ℓ) − u(ℓ− 1)|| (15)

needs to be minimized, where|| · || denotes the 1-norm.
The control problem is complicated by the fact that the

control objectives comprise phenomena of very different time
scales. Specifically, the control objectives relevant to the motor
depend on the very fast dynamics of the stator flux, which is
affected by the applied stator voltage within a fewµs. On the
other hand, the average inverter switching frequency needsto
be evaluated over a time frame of several 100 ms. This is
particularly the case in high power applications, where the
switching frequencies are in the range of200 − 400Hz. This
implies that every semiconductor switch is turned on roughly
every3−5 ms. Since the switch positions can be altered every
Ts = 25µs, a very long horizon (a largeN ) of several hundred
steps is necessary to capture the average switching frequency,
thus leading to an intractable MPC scheme.

Apart from this, additional restrictions on the inverter switch
transitions may be present resulting from the constructionof
the inverter (as mentioned in Section II-A). We will refer to
them asswitching constraints.

V. M ODEL PREDICTIVE DIRECT TORQUE CONTROL

Adopting the principles of MPC, we present a novel con-
trol methodology that considers all (admissible) switching
sequences over a rather short switching horizonN , which is
referred to as the control horizon in the MPC community. A
switching sequence is defined as a sequence of semiconductor
switch positionsuabc over the time-interval of lengthN from
time-step0 to time-stepN − 1. In a next step, based on
the nonlinear discrete-time prediction model (14), the MPC
scheme computes for each switching sequence the drive’s
response, i.e. the evolution of the output variables over the
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Control algorithm:

1.) Determine adm. sw.

sequences over horizon N

2.) Predict drive response

3.) Determine candidate

sequences

4.) Extrapolate candidate

sequences

5.) Compute costs

6.) Minimize costs

7.) Apply switch position

Model Predictive Direct Torque Control

U,x0

y

Torque and flux

estimator

=

~~

Motor

Voltage

calculation

.

Internal

prediction

model

x = f(U,x,x0)

y = g(U,x,x0)

.

Tmin,
Tmax

Ψmin,
Ψmax

υmin,
υmax

u

Vdc, υn

Te, ω

Ψs, Ψr

v

is

Fig. 3: Block diagram of the model predictive DTC scheme, where U denotes
a switching sequences, and the initial statex0 is composed ofx(k) and
u(k − 1)

switching horizonN . To emulate a long output horizon,
the “promising” output trajectories are extrapolated, andthe
number of time-steps is determined when the first output
variable hits a hysteresis bound. The cost associated with
each switching sequence is determined by dividing the total
number of switch transitions in the sequence by the length
of the extrapolated trajectory. Minimizing this penalty yields
the optimal switching sequence and the next optimal switch
position to be applied to the inverter.

The model predictive DTC scheme is available in two forms
with N > 1 andN = 1 differing mostly in the degree of
freedom for the switching sequences and the handling of the
switching constraints, and thus in the computational burden
and the performance.

A. Horizon N > 1

For MPDTC with a switching horizon larger than one, we
consider only switching sequences of lengthN that meet the
switching constraints imposed by the physics of the inverter
(see Section II-A). As shown in Fig. 3, given the current
state x(k), the last switch positionu(k − 1), the bounds
on the output variables, and using the nonlinear discrete-
time prediction model (14) of the DTC drive, the controller
computes at time-instantk the next switch positionu(k)
according to the following procedure.

1) Given the last switch positionu(k − 1) and taking
into account the constraints on the switch transitions
induced by the inverter topology, determine all switching
sequencesU i(k) = [ui(k), . . . , ui(k+N − 1)] over the
switching horizonN , wherei ∈ I and I is an index
set.

2) For these switching sequences, compute the drive re-
sponse, i.e. compute all torque, stator flux and neu-
tral point potential trajectories starting fromx(k)
over the switching horizonN given by Y i(k) =
[yi(k), . . . , yi(k +N)].

3) Determine those switching sequences that yield output
trajectories that are eitherfeasible at the end of the
switching horizon, orpoint in the proper direction at

kk k + 1k + 1 k + 2k + 2

Tmax

Tmin

TeTe

Time (sampling instants)

(a) Trajectories that are either feasible (left) or
pointing in the proper direction (right)

kk k + 1k + 1 k + 2k + 2

Tmax

Tmin

TeTe

Time (sampling instants)

(b) Trajectories that are neither feasible (left) nor
pointing in the proper direction (right)

Fig. 4: Example torque trajectories forN = 2 (the same concept applies to
the stator flux and the neutral point potential). The feasible region between
the hysteresis bounds is hatched

all time-steps within the switching horizon. We refer to
these switching sequences ascandidate sequencesU i(k)
with i ∈ Ic ⊆ I. Feasibility means that the output
variable lies within its corresponding bounds at time-step
k+N ; to point in the proper direction refers to the case
in which an output variable is not necessarily feasible,
but the degree of the bounds’ violation decreases at
every time-step within the switching horizon. For the
caseN = 2, Fig. 4 shows several example output
trajectories that visualize these properties. The above
condition needs to holdcomponentwise, i.e. for all three
output variables2.

4) For the candidate sequences, extrapolate the output
trajectories from time-instantk + N on linearly3 using
the samples at the time-instantsk +N − 1 andk +N .
Derive the number of time-steps after which the first
of the three output variables leaves the feasible region
defined by the corresponding upper and lower bound4.
This yields the number of time-stepsni, i ∈ Ic this
switching sequence can be applied before switching is
predicted to be required again. Thus,ni refers to the
total length of the (extrapolated) output sequence.

2As an example, consider the case where the torque is feasible, the stator
flux points in the proper direction and the neutral point potential is feasible.

3Particularly during high speed operation, it is advantageous to extrapolate
the stator flux quadratically using also the flux sample atk+N +1. The latter
is computed by applying the switch positionu(k + N) = u(k + N − 1).

4Note that we determine when the first output variable leaves the feasible
region rather than when it hits a bound. This is done to account for situations
in which an output variable lies outside its bounds but steers towards one of
them.
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k k +N k + 5 k + 10
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3
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Tmin

Te

Time (sampling instants)

(a) Torque trajectories

k k +N k + 5 k + 10
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2

3

Time (sampling instants)

Ψmax
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Ψs

(b) Stator flux trajectories
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k

k +N

k +N

k +N

k + 5

k + 5

k + 5

k + 10

k + 10
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1

1

1

2

2

2

3

3

3

Time (sampling instants)

1

1

1

−1

−1

−1

ua

ub
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(c) Switch positions

Fig. 5: Torque and stator flux trajectories and the switch positions of
Example 1 starting at time-instantk for the three switching sequences
U1(k), U2(k) and U3(k). The trajectories within the switching horizon
N = 2 are solid, their extrapolations are dashed lines. The numbers refer
to the indices of the switching sequences. The regions between the upper and
lower (hysteresis) bounds are hatched

5) Compute for each candidate sequencei ∈ Ic the cost
ci = si/ni, where

si =

k+N−1
∑

ℓ=k

||ui(ℓ) − ui(ℓ− 1)||1 (16)

is the total number of switch transitions in the switching
sequenceU i(k), andni is the corresponding sequence
length. The costci is an approximation of the average

switching frequency, andni can be interpreted as a time-
varying output horizon.

6) Choose the switching sequenceU∗ = U i(k) with the
minimal cost, wherei is given by

i = argmin
i∈Ic

ci . (17)

7) Apply only the first switch positionu∗ = ui(k) of this
sequence.

At the next time-instant, repeat the procedure.
Example 1: To visualize the control concept, consider the

example shown in Fig. 5. Assume there are the three switching
sequencesU i(k), i ∈ I = {1, 2, 3} over the switching horizon
N = 2. According to the definition,U1(k) and U2(k) are
candidate sequences, whereasU3(k) is not. Extrapolating the
torque and the stator flux trajectories and determining when
they leave the feasible region leads to the results summarized
in Table I. Minimizing the cost yields the sequenceU2(k)
as the optimum. Note that this solution requires two switch
transitions (one at time-instantk, the second one at time-
instantk + 1), but this investment pays out due to the longer
length of the output trajectory. Without extrapolation, the
controller would selectedU1(k) as the optimum, since the
corresponding cost expressions would be1

2
and 1 for U1(k)

andU2(k), respectively. In the long run, however, this choice
would be inferior compared withU2(k) thus motivating the
concept of extrapolation. In this example, for the sake of
simplicity, we neglect the neutral point potential, which is
treated in exactly the same way as the torque and the stator
flux.

Generally, the worst case computation time of the algorithm
has to be accommodated in the given sampling interval. Yet,
in a real world drive application, where other tasks like
supervision and thermal protection are executed, the average
computation time should also be kept at a minimum. When
computing the next switch position, this can be achieved by
first evaluating whether switching can be avoided altogether,
i.e. whether the output variables are at time-stepk+N within
their respective bounds when reapplying the last switch posi-
tion for N time-steps. Only if this simple test fails, the above
outlined computations need to be performed. Furthermore,
bound techniques can be added to prune suboptimal branches
thus avoiding the computation of the whole switching tree over
N steps.

B. Horizon N = 1

The computational burden imposed by the model predictive
DTC scheme with a switching horizonN > 1 might exceed
the capabilities of some of the existing DTC control hardware.
A further reduction of the computation time can be achieved

Sequence Total lengthni of the Number of switch Cost
numberi (extrapolated) sequence transitionssi ci

1 4 1 1/4
2 10 2 1/5
3 – – –

TABLE I: Characteristics of the three switching sequences in Example 1
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by restricting the switching horizon toN = 1. However, given
the constraints on the switch transitions, such a short switching
horizon imposes restrictions on the set of reachable voltage
vectors and may lead to an infeasible control problem.

To reduce the computation time while dealing with the
issue of infeasibility, we propose in this section a modified
scheme that uses a switching horizon ofN = 1 and initially
ignores the switching constraints. As a result, the proposed
algorithm yields an optimal switch positionu∗(k) that may not
be directly reachable from the last switch positionu(k − 1),
since it was calculated by ignoring the switching constraints. In
a last step, the constraints are reintroduced, and an admissible
sequence of switch positions is calculated that leads to the
optimal switch position within several time-steps. We willrefer
to this sequence as anadmissible switching sequence.

More specifically, given the two switch positionsµ andν,
with µ, ν ∈ {−1, 0, 1}3, the admissible switching sequence
connectsµ with ν via intermediate switch positions while
taking into account the restrictions on the allowed switch
transitions. From the fact that switching in one component
(one stack of the inverter) by one switch transition at a time-
step is always possible, it follows directly that an admissible
switching sequence always exists, that additional switch tran-
sitions are not required and that the cost is not increased.

As the admissible switching sequence connecting two
switch positions (with the lowest cost) is in general not unique,
we use the following rules to narrow down the choices. (i)
Follow the shortest path (in terms of time-steps); (ii) choose
the switch position that yields the least number of switch
transitions at time-instantk; (iii) choose the switch position
that provides the most alternatives at time-instantk + 1. The
admissible switching sequence can be stored in a look-up
table, which holds only the first switch position in the sequence
according to the receding horizon policy. This leads to a look-
up table of dimension27 × 27. Exploiting the 2π

3
symmetry

of the voltage vectors in theαβ plane, the dimension of this
look-up table can be reduced to11 × 27 as detailed in [24].

Setting the switching horizon toN = 1, the control
algorithm is the same as described in Section V-A with the
following differences, where the numbering corresponds tothe
one in Section V-A.

1) Given the last switch positionu(k − 1) and ignoring
the constraints on the switch transitions induced by the
inverter topology, 27 switching sequences of length one
result.

7) From the look-up table read out of the admissible
switching sequence fromu(k−1) to u(k) the first switch
positionu∗(k), and apply it to the inverter.

VI. D ISCUSSION ANDCOMPUTATIONAL EFFORT

The notion of the candidate switching sequences associated
with output trajectories that are element-wise feasible atthe
end of the switching horizon or point towards the bounds,
leads to the following properties. Firstly, step changes in
the bounds (e.g. large steps in the torque reference) can be
straightforwardly handled. In such cases, a switching sequence
may not exist that moves the output variables withinN time-
steps back inside the bounds. Considering also sequences that

move the output variables only towards – rather than inside
– the bounds allows the control scheme to easily address this
issue.

Secondly, excessive switching is avoided. As can be seen
from Figs. 4(a) and 5, the bounds on the output variables
are in general not strictly imposed by the MPDTC scheme,
and output trajectories of candidate sequences may violate
the bounds similar to standard DTC. As a result, one or
more output variable might slightly violate a bound before
a new switch position is selected. Hence, the MPDTC ap-
proach refrains from unnecessary switching when the bounds
are slightly shifted, or when measurement noise and model
uncertainties affect the predictions in an adverse way.

Since the proposed MPDTC scheme is intended to capture
and minimize the average switching frequency, a long predic-
tion interval is beneficial. To avoid an explosion of the related
computational complexity, a shortswitching (i.e. control) hori-
zon N (usually two or three steps), but a longoutput horizon
(up to 100 steps) is used. This is achieved by extrapolating
the output trajectories from the end of the switching horizon
onwards until the time-instant where the first output variable
hits one of its bounds. Linear extrapolation is straightforward
to implement and computationally inexpensive. Note that this
approach is closely related to blocking control moves in the
control literature and themultiple-rate prediction model ap-
proach, which we introduced in [7]. As the simulation results
will show, the concept of a short switching horizon combined
with extrapolation allows us to greatly increase the lengthof
the prediction interval thus enhancing the performance of the
controller while keeping the computation times short.

Most importantly, the proposed control scheme can be easily
adapted to different drives with different motors and inverter
topologies (like two- or five-level inverters), as only the motor
and inverter models need to be updated, and because there
are no tuning parameters. Furthermore, possible constraints
on the allowed switch transitions of the inverter can be easily
incorporated by storing them in a look-up table.

A. Horizon N > 1

Nevertheless, when constraints on the allowed switch tran-
sitions are present, short switching horizons restrict theset
of switch positions that can be reached within the switching
horizon. More specifically, up to three consecutive steps are
necessary to switch from one switch position to another (e.g.
from [−1 − 1 1]T to [1 1 − 1]T and vice versa). Thus, a
switching horizon ofN = 2 is too short to ensure that any
arbitrary switch position can be reached within the switching
horizon. ForN = 2, this occurs only very rarely, because
those unreachable switch positions involve multiple switch
transitions and are thus very expensive in terms of the cost
expression. These issues are analyzed, visualized and solved
in the second part of this paper [28] and in [24, Section 7.5].

Next, we briefly analyze the computational burden of the
control algorithm. For this, we assume that all basic operations
such as additions, multiplications, divisions and comparisons
require one computation cycle as well as evaluating a look-up
table. Possible operations for the loading or storing of variables
and the execution of loops are neglected.
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Fig. 6: Model Predictive DTC withN = 2: Torque step from 0.1 p.u. to 0.9 p.u. torque att = 100 ms and 50 % speed. The torque, flux and neutral point
potential trajectories are plotted together with their bounds over the time axis.
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Fig. 7: Standard DTC: Torque step from 0.1 p.u. to 0.9 p.u. torque att = 100 ms and 50 % speed. The torque, flux and neutral point potentialtrajectories are
plotted together with their bounds over the time axis.

To simplify the exposition, the switching horizon is fixed
to N = 2 hereafter. We assume that in the first step the
inverter can switch from the last switch positionu(k − 1)
to s1 voltage vectors. Subsequently, by branching on each
of theses1 switch positions we obtain a total ofs2 feasible
switch positions at the second step. Then, as shown in detail
in [24, Section 7.4.1], the total number of operations required
to execute the control algorithm is16 + 39s1 + 79s2. For
ABB’s three-level inverter with the particular constraints on
the admissible switch transitions,s1 is upper bounded by 13
ands2 is upper bounded by 121. Therefore, the upper bound
on the total number of operations per control cycle is given by
10’082. Note that the computationally most expensive partsof
the algorithm, which requires 70 % of the total computation
power, can be easily parallelized.

B. Horizon N = 1

When limiting the switching horizon toN = 1 the
same properties described above are induced, except for the
following difference. Relaxing the constraints on the switch
transitions and using the notion of the admissible switching
sequence avoids the restrictions on the set of switch positions
that can be reached within the switching horizon. More pre-
cisely, any switch position can be chosen by the optimization
step, yet only the first switch position of the corresponding
admissible switching sequence is applied to the inverter. This
is done in accordance with the receding horizon policy.

Apart from that, bounds on the output variables are handled
differently. In cases where the chosen switch position meets

the switching constraints, i.e. the desired switch position can
be directly applied and the admissible switching sequence is
of length one, the bounds are strictly respected. However, if
the admissible switching sequence comprises more than one
element, the bounds are not guaranteed to be strictly respected
(as it is the case for the scheme withN > 1).

Considering again the three-level inverter as above, the
computational effort forN = 1 is reduced by a factor of five
compared to theN = 2 case. Specifically, the upper bound is
1859 operations.

For a detailed analysis of the computational burden for the
MPDTC algorithms withN > 1 andN = 1, the reader is
referred to Sections 7.4.1 and 7.4.2 in [24], respectively.These
sections also provide the pseudo code of the algorithms.

VII. PERFORMANCEEVALUATION

This section compares the performance of the proposed
model predictive DTC schemes with ABB’s ACS 6000
drive [6]. This implies that we will use ABB’s DTC as a
reference, to which we refer as standard DTC. The perfor-
mance comparison is done through simulations that are based
on a very accurate and detailed Matlab/Simulink model of the

Case study Rated motor power Rated motor voltage

I 1.6 MW 3.3 kV

II 6.6 MW 3.1 kV

III 15 kW 400 V

TABLE II: Motor ratings of the three case studies
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drive, which was provided by ABB to ensure an as realistic
as possible simulation set-up. This model includes a state
estimator for the motor fluxes, and an outer (speed) control
loop that adjusts the torque reference and accordingly the
(time-varying) bounds on the torque. For MPDTC, the look-up
table with ABB’s DTC strategy is replaced by a function that
solves at each sampling-instant the optimal control problem
according to Fig. 3 and Section V.

Three case studies are considered comprising two medium-
voltage drives and a low-voltage drive. Table II provides
a rough overview of these case studies, while the detailed
ratings and parameters can be found in [24, Section 7.6]. Two
aspects are compared. Firstly, the torque, flux and neutral point
potential are compared when applying a torque step. Secondly,
the average switching frequency is compared over the whole
range of operating points, and the root mean squared violation
of the torque and stator flux bounds is evaluated, too. For both
control schemes, the same torque and flux bounds are used.
For the neutral point potential the bounds are chosen so as to
reflect the behavior of ABB’s control scheme, thus ensuring
the comparison to be meaningful.

The evaluations are performed for the whole operating
range by gridding the speedωr and the load torqueTℓ at
0.1, 0.2, . . .1.0 p.u.. The case of very high speed (0.9 and
1.0 p.u.) was left out for Case Studies I and II as the (total)
dc-link voltage of4294V is too low to allow for an operation
at high speed. At each operating point, the behavior of the
drive was simulated over2 s.

A. Torque Step for Horizon N > 1

For Case Study I and at 50 % speed a torque step is
applied from 0.1 p.u. to 0.9 p.u.. Fig. 6 depicts the resulting
closed-loop behavior of the torque, the stator flux and the
neutral point potential with MPDTC, whereas Fig. 7 shows the
corresponding trajectories resulting from ABB’s DTC strategy.
As can be seen, the MPDTC scheme preserves the rapid
dynamic response achieved by the standard DTC approach
of less than 2 ms at this operating point, while the bounds
imposed on the torque, stator flux and neutral point potential
are slightly better respected.

B. Average Switching Frequency for Horizon N > 1

First, we consider the MPDTC scheme proposed in Sec-
tion V-A with a switching horizonN > 1. We setN = 2,
and additionally limit the number of switching sequences by
imposing an upper bound of three on the total number of
switch transitions within a sequence. This bound removes a
priori switching sequences with very high cost and generally
does not affect the performance.

For Case Study I, Fig. 8(a) compares the average switching
frequencies of standard DTC with our proposed scheme. This
is done over the above defined grid of operating points.
Fig. 8(b) shows the percentage-wise (relative) reduction of the
average switching frequency. Averaging the data in Fig. 8(b)
over all grid points yields an average switching frequency
reduction of 25 % (or 60 Hz), while the maximum improve-
ment amounts to 42 % (or 120 Hz). Over the whole range of

Case study Average reduction off Maximal reduction off

I 25 % or 60 Hz 42 % or 120 Hz

II 23 % or 66 Hz 42 % or 132 Hz

III 23 % or 91 Hz 49 % or 195 Hz

TABLE III: Reduction of the average switching frequencyf of MPDTC with
N = 2 relative to the standard DTC for the three case studies

operating points, the bounds on the torque, stator flux and
neutral point potential are at least as well respected as by
the standard DTC scheme, as shown in Fig. 9 (the definition
of the root mean squared violation is given in Appendix A).
Nevertheless, as described in Section VI-A, also the MPDTC
scheme allows for slight violations of the bounds.

It is interesting to note that the largest performance im-
provement is achieved around a modulation index of 0.5. Here,
at the transition between the inner and the outer hexagon in
the tree-level inverter, the “density” of voltage vectors and
thus the degrees of freedom is at its maximum. This allows
the model predictive DTC scheme to choose among several
different switching strategies the one that meets the given
performance objective best. On the other hand, it seems that
the standard DTC scheme struggles to take advantage of this.

The figures for Case Studies II and III are very similar and
thus omitted here. As shown in Table III, the average and
the maximal reductions are similar for all three case studies
indicating that the proposed control scheme works equally well
for drives with very different characteristics and ratings.

C. Average Switching Frequency for Horizon N = 1

For the case of MPDTC withN = 1 as introduced in
Section V-B, we consider only Case Study I as an example. For
Case Study 1, the average reduction of the switching frequency
over all grid points is given by 16 % (or 40 Hz), while the
maximum improvement amounts to 38 % (or 91 Hz). The
bounds on the torque, stator flux and neutral point potentialare
almost perfectly respected over the whole range of operating
points. The corresponding figures are omitted here due to
space limitations. The interested reader is referred to [24,
Section 7.4.4].

Compared to the performance results forN = 2, the
performance improvement forN = 1 is smaller by one third.
However, at least in the absence of noise, the MPDTC scheme
with N = 1 keeps the controlled variables tightly within their
bounds, whereas small violations of the bounds are tolerated
for N > 1.

VIII. C ONCLUSIONS

In this paper, we have presented the new drive control
conceptmodel predictive DTC that is based on an internal
controller model, switching sequences comprising multiple
time-steps, a controller objective function, and an optimization
stage. The latter minimizes the objective function with respect
to the internal model dynamic, the bounds on the torque, stator
flux and neutral point potential, and the admissible switch
transitions. This optimization is performed over a multiple
step prediction horizon. The control scheme is available in
two forms – with a switching horizon larger than one and
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MPDTC with N = 2 (lower surface) over the grid of operating points (speed andtorque)

with a horizon equal to one. For illustration purposes, we have
focused in this paper on a three-level voltage source inverter
driving a squirrel-cage induction motor.

Compared to the state of the art in drive control, the
proposed control scheme offers two major advantages. (i)
Performance: MPDTC inherits the very fast dynamic torque
response of standard DTC that is inherent in hysteresis-
based control concepts. By penalizing the short-term switching
frequency in the objective function, the average switching
frequency is reduced – compared to ABB’s ACS 6000 scheme
– by up to 50 %. In average over the whole range of operating
points, the switching frequency is reduced by a quarter. At the
same time, the imposed bounds on the torque, flux and neutral
point potential are more strictly respected. In the second part
of this paper [28], these simulation results are accurately

confirmed by experimental results. Moreover, the performance
improvement is practically independent from the rating andthe
specific drive characteristics.

(ii) Flexibility and simplicity: The MPDTC scheme is
highly flexible. It is straightforward to incorporate additional
or different performance and control objectives by simply
modifying the cost function. Most importantly, the controller
can be directly applied to a large class of three-phase AC
drives – since the controller is based on an internal prediction
model, only this internal model needs to be adapted. This
adaptation can be done on-line as a parameter adaption to
account for a varying stator resistance for example, or it can
be done off-line as a model structure change to make the
controller applicable to another drive with a different inverter
topology and/or a different electrical machine. The fact that the
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internal model is based on first principle dynamic equations
simplifies the controller design. Except for the width of the
hysteresis bounds, tuning parameters (like controller gains in
field oriented control) are not required.

However, these advantages impose a significant computa-
tional burden inherent to model predictive control. It is our
opinion that the computational burden associated with the
algorithms is close to the lowest possible that is achievable
for a model predictive control approach. Moreover, ABB’s
successful implementation of the MPDTC approach shown in
the second part of this paper [28] proves that such algorithms
can be run on the already existing hardware in the time scales
required.

APPENDIX

The matrices and vectors of the discrete-time drive model
(14) are given as follows.

A =









−rs
xrr

D
0 rs

xm

D
0

0 −rs
xrr

D
0 rs

xm

D

rr
xm

D
0 −rr

xss

D
−ωr

0 rr
xm

D
ωr −rr

xss

D









, (18)

B1 =
Vdc

2









1 0 0
0 1 0
0 0 0
0 0 0









P , (19)

B2(x(k)) = xT (k)
1

2xC
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






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0 0
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0 0

0 −xm
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0

0 0 0
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
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


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P−T (20)

and

g(k) =





xm

D
(x2(k)x3(k) − x4(k)x1(k))

√

x2
1(k) + x2

2(k)
x5(k)



 , (21)

wherexi denotes theith component of the vectorx.
The percentage-wise root mean squared violation of the

torque over the discrete-time axisk = 1, 2, . . . , kmax is
defined as

100%

√

√

√

√

1

kmax

kmax
∑

k=1

(ǫT (k))2 (22)

with

ǫT (k) =







Te(k) − Tmax if Te(k) > Tmax

Tmin − Te(k) if Te(k) < Tmin

0 else ,
(23)

whereTe(k) and the bounds are given in p.u.. The violations
for the stator flux and the neutral point potential are defined
accordingly.
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