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Hybrid Model Predictive Control
of the Step-Down DC-DC Converter

Tobias Geyer, Georgios Papafotiou,Member, IEEE, and Manfred Morari,Fellow, IEEE

Abstract— Dc-dc converters pose challenging hybrid control
problems, since the semiconductor switches induce different
modes of operation and several constraints (on the duty cycle
and the inductor current) are present. In this paper, we propose
a novel approach to the modelling and controller design problem
for fixed-frequency dc-dc converters, using a synchronous step-
down dc-dc converter as an illustrative example. We introduce
a hybrid converter model that is valid for the whole operating
regime. Based on this model, we formulate and solve a con-
strained optimal control problem. To make the scheme imple-
mentable, we derive off-line the explicit state-feedback control
law, which can be easily stored and implemented in a look-
up table. A Kalman filter is added to account for unmeasured
load variations and to achieve zero steady-state output voltage
error. An a posteriori analysis proves – by deriving a piecewise
quadratic Lyapunov function – that the closed-loop system is
exponentially stable. Simulation results demonstrate the potential
advantages of the proposed control methodology.

Index Terms— Model predictive control, hybrid system, piece-
wise affine system, dc-dc converter, power electronics.

I. I NTRODUCTION

Nowadays, switch-mode dc-dc conversion is a mature and
well-established technology, used in a large variety of demand-
ing applications. Yet, the control problems associated with
such converters still pose theoretical challenges for academic
researchers, which manifest themselves in the numerous pub-
lications on this subject over the last years. The development
of advanced control techniques together with the increased
computational power of the available hardware in the control
loop, allow tackling the control problem from a new perspec-
tive. In this paper, we propose a new approach to the problem
– namely, we pose and solve the constrained optimal control
problem for fixed-frequency switch-mode dc-dc converters.

The difficulties in controlling dc-dc converters arise from
their hybrid nature. In general, these converters feature three
different modes of operation, where each mode has an associ-
ated linear continuous-time dynamic. Furthermore, constraints
are present, which result from the converter topology. In
particular, the manipulated variable of the control problem
(the duty cycle) is bounded between zero and one, and in
the discontinuous current operation a state (inductor current)
is constrained to be nonnegative. Additional constraints may
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be imposed as safety measures, such as current limiting
or soft-starting, where the latter constitutes a constraint on
the maximal derivative of the current during start-up. The
control problem is further complicated by gross changes in
the operating point that occur due to input voltage and output
load variations.

Motivated by the aforementioned difficulties, we present a
novel approach to the modelling and controller design problem
for fixed-frequency dc-dc converters, using a synchronous
step-down converter as an illustrative example. The converter
is modelled as a hybrid system. A piecewise affine (PWA)
model is derived that is valid for the whole operating regime
and captures the evolution of the state variables within the
switching period. Based on the hybrid model, we formulate
a constrained finite time optimal control (CFTOC) problem,
which is solved off-line using Dynamic Programming [1]. This
approach leads to a state-feedback controller that is defined
over the whole state-space and yields the duty cycle as a PWA
function of the states. This controller can be implemented in
form of a look-up table, thus avoiding on-line optimization. We
would like to emphasize that the controller is designed such
that for the control law computation only directly available
quantities are needed. In particular, we assume that – in accor-
dance with common practice – the input voltage, the inductor
current and the output voltage can be directly measured.

The proposed approach carries a number of benefits – the
most prominent being the systematic character of the design
procedure that avoids excessive iterations and tuning. In par-
ticular, the control objectives are expressed in the cost function
of the CFTOC in a straightforward manner, and all constraints
are directly included in the design procedure leading to a
controller that achieves current limiting without adopting the
traditional implementation. Most importantly, the control law
covers the whole operating regime due to the derived PWA
model that provides an accurate representation of the converter
for the whole state-input space. This leads to a closed-loop
performance independent from the operating point. Moreover,
in an a posteriori step, a piecewise quadratic (PWQ) Lyapunov
function is derived, which proves that the derived controller
is exponentially stable (at least for the nominal values of
the input voltage and the load). Furthermore, the proposed
control scheme rejects gross disturbances in the (measured)
input voltage and the (unmeasured) output resistance.

These benefits, however, come at a cost. The derived
controller is rather complex and the look-up table can easily
feature 100 or more entries. In some applications this may
prove to be a limiting factor. Yet, the main scope of this
paper is to illustrate that the application of advanced hybrid
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optimal control methods for dc-dc converters is conceivable
and within reach. Moreover, compared with only locally valid
controllers, which are predominantly used as shown below,
a more complex solution is to be expected since the control
problem is addressed for the complete state-space.

Due to space limitations, we provide here only a brief
overview of the literature most related to our approach – a
more extensive coverage can be found in Section 8.1.2 of [2].
The dominant approach to the modelling and controller design
of switch-mode dc-dc converters is the method of state-space
averaging [3], [4] and the design of a control loop comprising
a PI-type controller and a Pulse Width Modulation (PWM)
unit. The controller is tuned for a model locally linearized
around a specific operating point. In the literature a wide range
of strategies have been proposed for improving the controller
design, but the majority of the proposed design methods is
still based on averaged and/or locally linearized models ofthe
converters. In this category, the methods introduced vary from
Fuzzy Logic [5] to Linear Quadratic Regulators (LQR) [6], and
from non-linear control techniques [7], [8], [9] to feedforward
control [10], [11].

In [12], [13], the authors propose an (unconstrained) LQR
controller based on a locally linearized discrete-time model
of the averaged dc-dc converter. In [14], an unconstrained
nonlinear predictive controller is formulated for a dc-dc con-
verter using a control methodology that extends the concept
of Generalized Predictive Control [15] to nonlinear systems.
For the latter, an implementation may prove to be difficult
due to the lack of convergence guarantees and the potentially
excessive computation time. As an unconstrained optimization
problem is solved, the constraints on the duty cycle and
the inductor current cannot be handled in a straightforward
manner.

Recently, there have been several proposals to apply new
results from hybrid system theory to the analysis and controller
design of dc-dc converters. In [16] and [17], the authors con-
sider the switch position as the boolean manipulated variable
of the control problem, and synthesize stabilizing controllers
using Relaxed Dynamic Programming [16] and Lyapounov
theory. Our approach, on the other hand, uses the duty cycle,
a continuous-valued real variable bounded by0 and 1, as
the manipulated variable, thus ensuring a constant switching
frequency. In any case, our approach is more related to [18],
with the main differences that we address the constraints on
the state and input variables during the controller design,and
the fact that the controller is based on a PWA description of
the converter, which is valid for the whole operating range.

The paper is organized in the following way. We start in
Section II by summarizing the nonlinear continuous-time state-
space equations of the converter. Theν-resolution modelling
approach is introduced and analyzed in Section III. Based on
this model, we formulate and solve a constrained finite time
optimal control problem in Section IV. In Section IV-C we
pre-solve the control problem off-line and derive the equivalent
state-feedback control law parameterized over the state-space.
This controller can be stored in a look-up table, hence allowing
the practical implementation of the proposed control scheme.
A piecewise quadratic (PWQ) Lyapunov function is derived
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Fig. 1: Topology of the step-down synchronous converter

in Section V proving that the nominal closed-loop system is
exponentially stable. Section VI illustrates various aspects of
the system’s behavior with simulation results including start-
up, a comparison with a current mode PI controller, and gross
changes in the input voltage and the output resistance. The
paper is summarized in Section VII and conclusions are drawn.

II. M ATHEMATICAL MODEL OF SYNCHRONOUS

CONVERTER

We start by modelling the physical behavior of the syn-
chronous step-down converter in continuous-time, and derive
for each mode of operation the state-space equations. This
model will be used later to simulate the behavior of the
plant. The circuit topology of the converter is shown in
Fig. 1. Using normalized quantities,ro denotes the output load,
which we assume to be ohmic,rc is the Equivalent Series
Resistance (ESR) of the capacitor,rℓ is the internal resistance
of the inductor,xℓ and xc represent the inductance and the
capacitance of the low-pass filtering stage, respectively,andvs

denotes the input voltage. The semiconductor switches, which
are operated dually, are driven by a pulse sequence with a
constant switching frequencyfs (period Ts). The duty cycle
d is defined byd = ton

Ts
, where ton represents the interval

within the switching period during which the primary switch
is in conduction. For every switching periodk the duty cycle
d(k) ∈ [0, 1] is chosen by the controller.

We definex(t) = [iℓ(t) vc(t)]
T as the state vector, where

iℓ(t) is the inductor current andvc(t) the capacitor voltage.
Given the duty cycled(k) during thek-th period, the system
is described by the following set of affine continuous-time
state-space equations. WhileS1 is conducting, they are given
by

dx(t)

dt
= Fx(t) + fvs, kTs 6 t < (k + d(k))Ts , (1)

and whenS1 is off, the system evolves autonomously accord-
ing to

dx(t)

dt
= Fx(t), (k + d(k))Ts 6 t < (k + 1)Ts , (2)

where the matricesF andf are given by

F =

[

− 1
xℓ

(rℓ + rorc

ro+rc
) − 1

xℓ

ro

ro+rc
1
xc

ro

ro+rc
− 1

xc

1
ro+rc

]

(3)

and

f =

[

1
xℓ

0

]

, (4)
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respectively. The output voltagevo(t) across the loadro is
expressed as a function of the states through

vo(t) = gT x(t) (5)

with
g =

[

rorc

ro+rc

ro

ro+rc

]T
. (6)

Of main interest from a control point of view is the output
voltage error

vo,err(k) =
1

Ts

∫ (k+1)Ts

kTs

(vo(t) − vo,ref ) dt (7)

integrated over thek-th switching period, wherevo,ref denotes
the reference of the output voltage.

The converter model includes constraints. By definition,
the duty cycled(k) is constrained between zero and one.
Moreover, a current limiting constraint has to be accounted
for, which is given by−iℓ,max < iℓ(t) < iℓ,max.

In general, the parameters of a dc-dc converter are time-
varying. These variations can be divided into two categories.
The parameters of the low-pass filtering stage are subject
only to slow deterioration over time or temperature changes.
Specifically, these include the ESR of the capacitorrc, the
internal resistance of the inductorrℓ, and the inductance
and capacitance of the low-pass filtering stagexℓ and xc,
respectively. On the other hand, the input voltagevs and
the load resistancero may vary step-wise and significantly.
In particular the load resistance may vary by several orders
of magnitude ranging from a short circuit to open circuit
conditions.

III. M ODELLING FOR CONTROLLER DESIGN

In the following, we derive a model to serve as prediction
model for the optimal control problem formulation in Sec-
tion IV. For this, we reformulate the converter model and
introduce theν-resolution modelling approach.

A. Reformulated Continuous-Time Model

First, from an implementation point of view, it is preferable
that all states are directly measureable. Thus, we replace in
the state vector the capacitor voltage by the output voltage1.
This leads to the redefined state vectorx(t) = [iℓ(t) vo(t)]

T ,
and the matricesF , f andg turn into

F =

[

− rℓ

xℓ
− 1

xℓ

ro
xℓ−rcrℓxc

(ro+rc)xcxℓ
− xℓ+rcroxc

(ro+rc)xcxℓ

]

,

f =

[ 1
xℓ

ro

ro+rc

rc

xℓ

]

, g =
[

0 1
]T

.

(8)

Second, as will be motivated later, we removevs from the
model equations by using it to scale2 the physical quantities
(states, output voltage reference and current limit) used in the

1In general, such a substitution is not advisable, since the output voltage of
most dc-dc converters is not continuous over time. For the step-down converter
treated here, however, the output voltage is a continuous function of time.

2As it is common practice, we assume all quantities to be given in the
p.u. system, thus to be normalized in the standard sense. The reader should
distinguish between the p.u. normalization and the scaling over vs.

model. Therefore, we introduce the statex′(t) = x(t)
vs

, which
scales (1), (2), (5) and (7) overvs. This yields the reformulated
state-space equations

dx′(t)

dt
=

{

Fx′(t) + f, kTs 6 t < (k + d(k))Ts

Fx′(t), (k + d(k))Ts 6 t < (k + 1)Ts

(9a)

v′

o(t) = gT x′(t) , (9b)

where the matricesF , f and g are as in (8), andv′

o = vo

vs
is

the scaled output voltage. The relation for the output voltage
error is given by

v′

o,err(k) =
1

Ts

∫ (k+1)Ts

kTs

(v′

o(t) − v′

o,ref ) dt (10)

with the scaled output voltage referencev′

o,ref =
vo,ref

vs
and

the scaled output voltage errorv′

o,err =
vo,err

vs
. Furthermore,

we normalize the current limit to

i′ℓ,max =
iℓ,max

vs

. (11)

Strictly speaking the above scaling in (9) holds only if
vs is time-invariant (or piecewise constant). Nevertheless,
for the prediction model one only needs to assume that the
input voltage remains constant within the limited time of the
prediction interval (a few switching periods). Since in practice
the input voltage is either piecewise constant or varies only
slowly compared to the (very short) switching period, the
normalized state equations can serve as a sufficiently accurate
prediction model.

Before proceeding, we elaborate on the parameters of the
reformulated model. For the controller design, we assume that
(the slowly varying parameters)rc, rℓ, xℓ andxc are constant.
Moreover, we additionally assume that the load resistancero is
constant3, but the input voltagevs may vary with time. Since
the scaling renders the prediction model equations independent
of (the time-varying)vs, the matricesF , f and g in (8) are
time-invariant. Hence, the only time-varying model parameters
are the scaled output voltage referencev′

o,ref and the scaled
current limit i′ℓ,max.

B. ν-Resolution Discrete-Time Hybrid Model

Using the reformulated continuous-time model derived in
the previous section as a starting point, the goal of this section
is to derive a model of the converter that is suitable to serve
as a prediction model for the optimal control problem. This
model should have the following properties. First, it is natural
to formulate the model and the controller in the discrete-time
domain, as the manipulated variable given by the duty cycle
is constant within the switching period and changes only at
the time-instantskTs, k ∈ N0. Second, it would be beneficial
to capture the evolution of the states also within the switching
period, as this would enable us to impose constraints on the
states not only at time-instantskTs but also on intermediate
samples. This is needed to keep the peaks of the inductor

3In Section IV-D, we will relax this assumption and introduce aKalman
filter to account for (unmeasured) changes inro by manipulating the scaled
output voltage referencev′

o,ref
.
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Fig. 2: Theν-resolution modelling approach visualized for thek-th period

current below the current limit. Third, the model needs to
yield an approximation of the output voltage error given by the
integral (10). Most important, as the converter is intrinsically
hybrid in nature, we aim to retain the structure of the two
operation modes and to account for the hybrid character.

Hereafter, we introduce theν-resolution modelling approach
that accounts for all the above requested properties. As illus-
trated in Fig. 2, the basic idea is to divide the period of length
Ts into ν notional subperiods of lengthτs = Ts/ν with ν ∈ N,
ν ≥ 1. Within thek-th period, we useξ(n) to denote the states
at time-instantskTs+nτs with n ∈ {0, 1, . . . , ν}. Furthermore,
by definition,ξ(0) = x′(k) andx′(k + 1) = ξ(ν) hold. Note
that ξ refers to the scaledx′.

We would like to stress that the controller samples the phys-
ical plant only everyTs. SubdividingTs into subperiods does
not imply a higher sampling rate. Theν-resolution approach
increases the model accuracy beyond standard averaging while
retaining the sampling intervalTs.

Next, we introduceν binary variables

σn = true ⇐⇒ d(k) ≥
n

ν
, n = 0, . . . , ν − 1 , (12)

which represent the switch positions ofS1 at time-instants
nτs. Recall that the switchS2 is dually operated with respect
to S1.

For each subperiod, we introduce the two modes discussed
above (switch closed and open, respectively) plus an additional

third (auxiliary) mode that captures the transition from mode
one to mode two. More specifically, the modes are (i) the
switch S1 remains closed for the whole subperiod, (ii) the
switch S1 is open for the whole subperiod, and (iii) the
switch S1 is opening within the subperiod. Hence, for the
n-th subperiod, the state-update equation is

ξ(n + 1) =







Φ ξ(n) + Ψ, σn ∧ σn+1

Φ ξ(n), σ̄n

Φ ξ(n) + Ψ(νd(k) − n), σn ∧ σ̄n+1 ,
(13)

whereΦ andΨ are the discrete-time representations ofF and
f as defined in (8) with “sampling” timeτs. Note that if the
third mode is active, i.e.σn ∧ σ̄n+1 holds, νd(k) − n is
bounded by zero and one. Thus, the third mode is a weighted
average of the modes one and two. By increasingν the error
introduced by averaging can be made arbitrarily small.

The safety current limit is imposed on the evolution of the
statesξ(n) by adding the constraints

−i′ℓ,max ≤ [1 0] ξ(n) ≤ i′ℓ,max, n = 0, 1, . . . , ν − 1 . (14)

The notion of theν-resolution modelling thus allows us to
impose the current limit on the statesξ(n) with the fine
resolution Ts

ν
rather than only on the statesx′(k) with the

coarse resolutionTs.
Using the output voltage given by

v′

o(n) = gT ξ(n) , (15)

we approximate the voltage error integral (10) for thek-th
period in the following way.

v′

o,err(k) =
ν−1
∑

n=0

v′

o(n) + v′

o(n + 1)

2ν
− v′

o,ref (16)

Before proceeding, we define constraints on the states, the
parameters and the duty cycle. For the states, we require
x′ ∈ X ′, and the parameter vectorv′

p = [v′

o,ref i′ℓ,max]T

is restricted tov′

p ∈ V ′, where V ′ is application specific.
The duty cycle, on the other hand, is physically restricted to
d ∈ U = [0, 1].

In summary, theν-resolution modelling approach provides
a description of the state evolution within one period. In
particular, the discrete-time sequence[ξ(0), ξ(1), . . . , ξ(ν)] is
an accurate representation of the continuous-time evolution
of x′(t) for t ∈ [kTs, (k + 1)Ts]. The only approximation
introduced is the weighted average that appears in the third
mode of (13) when switchS1 is turned off.

C. Formulation of ν-Resolution Model in Hybrid Frameworks

1) MLD Form: Using the HYbrid Systems DEscription
Language HYSDEL [19], the above described model can be
easily cast in the Mixed Logical Dynamical (MLD) frame-
work [20], which is well-suited for constrained optimal con-
trol.

The general MLD form is

x(k + 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k) (17a)

y(k) = Cx(k) + D1u(k) + D2δ(k) + D3z(k) (17b)

E2δ(k) + E3z(k) ≤ E4x(k) + E1u(k) + E5 , (17c)
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Fig. 3: Polyhedral partition of the converter’s PWA model forν = 3 (for
the converter parameters in Table I, intersected withv′

o,ref
= 0.556 p.u. and

i′
ℓ,max

= 1.667 p.u.)

where x ∈ R
nc × {0, 1}nℓ denotes the states,u ∈ R

mc ×
{0, 1}mℓ the inputs andy ∈ R

pc × {0, 1}pℓ the outputs,
with both real and binary components. Furthermore,δ ∈
{0, 1}rℓ andz ∈ R

rc represent binary and auxiliary continuous
variables, respectively. These variables are introduced when
translating propositional logic or PWA functions into linear
inequalities. All constraints on states, inputs, outputs and
auxiliary variables are summarized in the mixed-integer linear
inequality constraint (17c). For details on the MLD framework,
the reader is referred to [20].

Theν-resolution model (12)–(16) can be directly described
in HYSDEL on a high-level textual basis. For the HYSDEL

code the interested reader is referred to Appendix A.4 in
[2]. The derivation of the MLD model (17) is performed
by the HYSDEL compiler, which generates the corresponding
matrices. The above procedure yields an MLD model with
two states, two parameters,(7ν) z-variables,(2(ν − 1) + 1)
δ-variables and(24ν + 8) mixed-integer linear inequality
constraints.

2) PWA Form: For the computation of the explicit state-
feedback control law, the converter model is required to be in
PWA form. Polyhedral PWA systems are defined by partition-
ing the state-space into polyhedra and associating with each
polyhedron an affine state-update and output function [21].
As shown in [22], for a given well-posed MLD model there
exists always anequivalent PWA representation. Equivalence
implies, that for all feasible initial states and for all feasible
input trajectories, both models yield the same state and output
trajectories. The conversion from MLD to PWA form is
performed efficiently using the mode enumeration algorithm
presented in [23]. The resulting PWA model is defined on the
five-dimensional spaceX ′ × V ′ × U given by the states, the
parameters and the input.

Example 1: To visualize the PWA model of the converter,
consider the set of converter parameters given in Table I.
Furthermore, we setX ′ = [−4, 4] × [−0.1, 1] p.u., V ′ =
[0.2, 1] × [0.6, 3] p.u. andU = [0, 1]. To better visualize the
polyhedral partition, we perform an intersection ofX ′ ×V ′ ×
U with v′

o,ref = 0.556 p.u. and i′ℓ,max = 1.667 p.u. thus
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Fig. 4: Accuracy (2-norm error) of the state-update function of theν-resolution
model with respect to the nonlinear dynamic

removing the two dimensions corresponding to the parameter
spaceV ′. Fig. 3 shows the resulting polyhedral partition of the
state-input spaceX ′×U , where we have additionally restricted
the first statei′ℓ to [−i′ℓ,max, i′ℓ,max]. Note that small (large)
capacitor voltages and large (small) duty cycles correspond to
large (small) inductor currents. Since we have added the upper
and lower safety current constraint in (14) as hard constraints
to the model, these state-input combinations are removed from
theX ′ × V ′ × U space.

D. Analysis of Hybrid Model

The exact discrete-time mapping from time-instantkTs to
(k + 1)Ts yields the nonlinear state-update map

x′

exact(k + 1) = eFTsx′(k) +

∫ d(k)Ts

0

eF (Ts−t)dt f , (18)

which is the discrete-time representation of (9a). The error
between (18) and the state-update function of theν-resolution
model is defined as

e(d) = x′

exact(k + 1) − x′(k + 1) . (19)

The 2-norm of this error is plotted in Fig. 4 as a function
of the duty cycle forν = 1, 2, 3 using the set of converter
parameters of Table I. As can be easily shown analytically by
applying (13) consecutively the errore(d) is a function of the
duty cycle only. Hence, sincee(d) is independent of the state
x′(k), this comparison holds for the whole state-space.

The choice ofν = 1 yields the standard (discrete-time)
averaged model, which is predominately used for the controller
design of dc-dc converters.

x′(k + 1) = Φx′(k) + Ψ d(k) (20)

with Φ = eFTs and Ψ =
∫ Ts

0
eF (Ts−t)dt f . Obviously, the

averaged model is perfectly accurate ford(k) = 0 andd(k) =
1, and it is at its worst ford(k) = 0.5. As one can see, settingν
to 2 already significantly improves the accuracy of the model.
For ν = 3, the error is small enough to allow designing a
controller with sufficiently accurate closed-loop performance.
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Using (13) consecutively, the discrete-time state-updatemap
of the ν-resolution model can be derived. Forν = 3, this is

x′(k + 1) = Φ3x′(k)+

+







Φ2Ψ3d(k), d(k) ∈ [0, 1
3 ]

Φ2Ψ + ΦΨ3(d(k) − 1
3 ), d(k) ∈ [13 , 2

3 ]
Φ2Ψ + ΦΨ + Ψ3(d(k) − 2

3 ), d(k) ∈ [ 23 , 1]
,

(21)

with Φ = eFτs , Ψ =
∫ τs

0
eF (τs−t)dt f andτs = Ts

3 . Note that
for the ν-resolution model, the matricesΦ and Ψ have been
derived by exact time-discretization over the subperiodτs.

The partition induced by this map confirms the polyhedral
partition of the PWAν-resolution model, which is visualized
in Fig. 3. As the converter dynamics are linear in the states,
there is no partitioning in the state-space. Yet, they are nonlin-
ear in the duty cycle. Theν-resolution model approximates this
nonlinearity by partitioning the duty cycle inν segments and
by averaging the transition from the first to the second mode
by a third (auxiliary) mode. In particular, the hybrid modelis
continuous when moving from one polyhedron to a neighbor-
ing one. This follows from the state-update equation (21) and
is confirmed by the continuity in Fig. 4.

We would like to stress once more that these results hold for
the whole state-space making the model a valid approximation
for all operating points, rather than locally for a specific
operating point, as standard linearization would do. The trade-
off between model accuracy and complexity is determined by
the design parameterν.

IV. CONSTRAINED OPTIMAL CONTROL

In this section, we propose a new optimal control scheme for
dc-dc converters. Our controller is based on constrained finite-
time optimal control (CFTOC) with a receding horizon policy,
more specifically on Model Predictive Control (MPC) [24].
In MPC, the control input is obtained by solving at each
sampling instant an open-loop optimal control problem over
a finite horizon using the current state of the plant as the
initial state. The underlying optimization procedure yields an
optimal control sequence that minimizes a given objective
function. By only applying the first control input in this
sequence and by recomputing the control sequence at the
next sampling instant, a receding horizon policy is achieved,
which provides feedback. A major advantage of MPC is its
ability to cope with hard constraints on manipulated variables,
states and outputs. Furthermore, as introduced in [20], MLD
models can be straightforwardly used as prediction models
for MPC. Moreover, the optimal state-feedback control law
can be pre-computed off-line for all feasible states using the
state vector as a parameter. For hybrid systems, such a method
has been introduced recently [25]. Apart from this, to address
unmeasured changes in the load resistor, we introduce at the
end of this section a Kalman filter that adjusts the output
voltage reference accordingly.

In the sequel, we assume that the input and output voltages
vs and vo, respectively, and the inductor currentiℓ can be
measured. The output reference voltagevo,ref and the current
limit iℓ,max are given by the problem setup. Based on those
measurements and parameters, the scaled quantitiesv′

o, v′

o,ref ,

i′ℓ andi′ℓ,max, which will be used as the inputs to the optimal
controller, directly follow.

A. Objective Function

In general, the control objectives are to regulate the average
output voltage to its reference as fast and with as little
overshoot as possible, or equivalently, to (i) minimize the
output voltage errorv′

o,err (ii) despite changes in the input
voltage vs or changes in the load resistancero, and (iii) to
respect the constraints on the inductor current and the duty
cycle. For now, we assume that the load resistancero is known.
We will later drop this assumption.

To induce a steady state operation under a constant non-
zero duty cycle, we introduce the difference between two
consecutive duty cycles

∆d(k) = d(k) − d(k − 1) . (22)

Next, we define the penalty matrixQ = diag(q1, q2) with
q1, q2 ∈ R

+ and the vectorε(k) = [v′

o,err(k) ∆d(k)]T with
v′

o,err(k) as defined in (16). Consider the objective function

J(x′(k), d(k−1), v′

p(k),D(k)) =

N−1
∑

ℓ=0

‖Q ε(k+ℓ|k)‖1 , (23)

which penalizes the predicted evolution ofε(k + ℓ|k) from
time-instantk on over the finite horizonN using the1-norm.
Note that the objective function not only depends on the
sequence of control inputsD(k) = [d(k), . . . , d(k +N −1)]T

and the (measured) statex′(k), but also on the last control
input d(k− 1), the output voltage referencev′

o,ref (k) and the
current limit i′ℓ,max(k), which are allowed to be time-varying
to account for changes in the input voltagevs(k). Recall that
we had definedv′

p = [v′

o,ref i′ℓ,max]T .
Summing up, objective (i) is incorporated in the objective

function, whereas objective (ii) is handled by normalizingthe
prediction model byvs, feeding the model withv′

o,ref , which
is basically the inverse ofvs, and assuming for now that
ro is known and updating the prediction model accordingly.
Objective (iii) is easily accounted for in the prediction model,
where hard constraints are imposed on the inductor current
and the duty cycle.

B. On-Line Computation of Control Input

The control input at time-instantk is obtained by minimiz-
ing the objective function (23) over the sequence of control
inputs D(k) subject to the mixed-integer linear inequality
constraints of the MLD model (17), the physical constraints
on the sequence of duty cycles

0 ≤ d(ℓ) ≤ 1 , ℓ = k, ..., k + N − 1 , (24)

and the expression (22). This amounts to the CFTOC

D∗(k) = arg min
D(k)

J(x′(k), d(k − 1), v′

p(k),D(k)) (25a)

subj. to (17), (22), (24) (25b)

leading to the sequence of optimal duty cyclesD∗(k), of
which only the first duty cycled∗(k) is applied to the
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converter. At the next sampling interval,k is set tok + 1, a
new state measurement is obtained, and the CFTOC problem
is solved again over the shifted horizon according to the
receding horizon policy. As we are using the1-norm in all cost
expressions, the CFTOC problem amounts to solving aMixed-
Integer Linear Program (MILP) for which efficient solvers
exist (like [26]).

C. Off-Line Computation of State-Feedback Control Law

To allow an implementation of the proposed controller
despite the high switching frequency, the solution to the
CFTOC problem (25) needs to be pre-computed off-line. To do
so, we use the algorithm described in [27], where the solution
is generated by combining dynamic programming with multi-
parametric programming and some basic polyhedral manipula-
tions. This algorithm is based on a PWA representation of the
hybrid converter model (rather than its MLD form). As in (25),
the control input is parameterized by the state vectorx′(k),
the last control inputd(k − 1), the output voltage reference
v′

o,ref (k) and the current limiti′ℓ,max(k). As will be motivated
in Section IV-D, we refrain from parameterizing the control
law in the load, but rather assume the load resistance to be
constant and nominal (ro = 1 p.u.).

The resulting optimal state-feedback control lawd∗(k) is a
PWA function of [(x′(k))T d(k − 1) v′

o,ref (k) i′ℓ,max(k)]T

defined on a polyhedral partition of the five-dimensional
parameter spaceX ′ × U × V ′. More specifically, the state-
space is partitioned into polyhedral sets and for each of these
sets the optimal control law is given as an affine function of
the state. For more details concerning the algorithm and the
properties of its solution the reader is referred to [28].

Example 2: For the PWA model derived in Example 1 with
the model and control problem parameters given in Table I, we
compute the PWA state-feedback control law using the Multi-
Parametric Toolbox [29]. The resulting controller is defined
on 633 polyhedral regions in the five-dimensional parameter
spaceX ′ × U × V ′. Using the optimal complexity reduction
algorithm [30], the controller is simplified to 121 regions.

To visualize the state-feedback control law, we substitute
v′

o,ref = 0.556 p.u., i′ℓ,max = 1.667 p.u. andd(k − 1) = 0.6
into the control law. As a result, the control law, which refers
now to the nominal case, is defined on the two-dimensional
state spaceX ′. Fig. 5 depicts the control inputd(k) as a PWA
function of x′(k). Note that the control law is well-defined,
that is for eachx′(k) ∈ X ′, d(k − 1) ∈ U and v′

p(k) ∈ V ′

exists a polyhedron and an associated affine control law such
thatd(k) can be evaluated as can be seen from Fig. 5(b). Yet,
the control law is discontinuous leading to the gaps visiblein
Fig. 5(a).

This control law, which is essentially a collection of (affine)
proportional (P) controllers, can be interpreted as follows. In a
small neighborhood of the steady state operating point, which
is given by i′ℓ = 0.3011 p.u., v′

o = 0.556 p.u. andd(k) =
0.585 p.u., the controller resembles an affine P-controller.
Further away from the operating point the behavior of the
controller changes drastically. In particular, the control law
saturates to respect the[0, 1] constraint on the duty cycle and

achieve optimality with respect to the objective function (23).
For very small (and very high) output voltages, the upper (and
lower) current constraint becomes active. This is reflectedin
the ’bending’ of the control law visible in Fig. 5.

D. Load Variations

In the following, we drop the assumption that the load
resistance is known and time-invariant. The load might be esti-
mated (e.g. by using an extended Kalman filter), but as can be
seen from (8), the load enters the model equations nonlinearly.
To account for that, numerous PWA approximations would
be necessary leading to an overly complex PWA model and
an extremely complex state-feedback control law. We rather
aim at a way to cope with load changes without introducing
too much additional complexity. Hence, we propose to use
the previously derived state-feedback controller (for a time-
invariant and nominal loadr0 = 1), to which we add a loop.

As can be seen from (8), in general, changes in the load
resistor affect the converter dynamics and the dc gain. This
is particularly the case, when the load decreases significantly
below the nominal value. Yet, in the presence of extreme load
resistor drops when the current constraint becomes active,
the only objective of the controller is to respect the safety
constraint on the inductor current and to drop the output
voltage accordingly. On the other hand, if the load is roughly
nominal or increased beyond its nominal value, then the
dynamics and the dc gain are subject only to minor changes.
Yet, due to the accuracy requirement for the output voltage
regulation (steady state error below 0.5 %), even small errors in
the dc gain need to be addressed. We suggest to cope with this
issue by adjusting the scaled output voltage reference fed into
the controller such that the error between the output voltage
and theactual reference is made small.

This can be achieved through the use of a Kalman filter [31]
that yields a zero steady-state output voltage error due to its
integrating character. For this, we augment the reformulated
(nominal) continuous-time system (8)–(11) by a third statev′

e

that tracks the output voltage error, and we use the Kalman
filter to estimate the augmented state vector

x′

a =
[

i′ℓ v′

o v′

e

]T
. (26)

The augmented model is modelled with a stochastic
continuous-time state equation

dx′

a(t)

dt
=

[

F 0
0 0

]

x′

a(t) +

[

f
0

]

u(t) + Gw1(t) , (27)

where u(t) is the signal that drives the converter’s primary
switch

u(t) =

{

1, kTs 6 t < (k + d(k))Ts

0, (k + d(k))Ts 6 t < (k + 1)Ts

}

(28)

and the measurement equation
[

i′ℓ(t)
v′

o(t)

]

=

[

1 0 0
0 1 1

]

x′

a(t) + Hw2(t) , (29)

with the matricesG = diag(1, 1, 1) andH = diag(1, 1). The
random variablesw1(t) ∈ R

3 and w2(t) ∈ R
2 represent the

process and the measurement noise, respectively. They are
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Fig. 5: State-feedback control lawd(k) for d(k − 1) = 0.6, v′

o,ref
= 0.556 p.u. andi′

ℓ,max
= 1.667 p.u., where dark blue corresponds tod(k) = 0 and

dark red tod(k) = 1

independent white and normal (Gaussian) probability distribu-
tions with E[w1w

T
1 ] = W1, E[w2w

T
2 ] = W2 andE[w1w

T
2 ] =

0, where 0 is a zero matrix of appropriate dimension. We
requireGW1G

T � 0 andW2 + HW1H
T ≻ 0. Note that the

augmented model is detectable and uses the nominal value of
the load resistor. Moreover, the effects of the switching inthe
converter are lumped in the time-varying input at the right-
hand side of (27), thus reducing the estimation problem to
that of a linear system driven by a time-varying input.

To allow an easy implementation of the Kalman filter, we
use a steady-state constant Kalman gain. To calculate this,the
noise covariance matricesW1 and W2 are chosen such that
high credibility is assigned to the measurements and dynamics
of the physical states, namelyi′ℓ andv′

o, while low credibility
is assigned to the dynamics of the dummy statev′

e. As a result,
the Kalman filter accurately tracks the physical states, while
the error due to the model mismatch (coming e.g. from the
different loads) is assigned tov′

e. As a result, the third state
v′

e tracks the output voltage error. In a last step, we adjust the
output voltage referencev′

o,ref by the tracked voltage error.
Specifically, we replacev′

o,ref in (10) by

ṽ′

o,ref = v′

o,ref − v̂′

e , (30)

wherev̂′

e denotes the estimate ofv′

e.

V. A NALYSIS

In an a posteriori analysis, we aim to show – by deriving a
piecewise quadratic (PWQ) Lyapunov function [32] – that the
optimal controller leads to exponential closed-loop stability.
Starting with the explicit PWA representation of the optimal
control law, we close the control loop with the PWAν-
resolution model derived in Section III-C.2. This leads to
a closed-loop system, which is PWA and autonomous by
definition. To facilitate the analysis, we restrict ourselves to
the nominal case with nominal load and nominal input voltage,
namely ro = 1 p.u. andvs = 1.8 p.u.. Hence, a Kalman
filter adjusting the output voltage reference is obsolete and
the output voltage reference is constant.

Let x′

c(k) = [i′ℓ(k) v′

o(k) d(k−1)]T , x′

c(k) ∈ X ′×U denote
the state vector of the autonomous system, and assume that
an equilibrium pointx̄′

c exists for v̄′

o = v′

o,ref . Since we aim
at showing stability of the equilibrium point̄x′

c, we perform
the coordinate transformation

ζ(k) = x′

c(k) − x̄′

c . (31)

In the sequel, we consider the autonomous system with state
vectorζ(k) ∈ Z, Z = {ζ | ζ + x̄′

c ∈ X ′×U}. For this system,
consider the invariant subsetZ0 ⊆ Z defined as

Z0 = {ζ(0) ∈ Z | ζ(k) ∈ Z ∀k ≥ 0} . (32)

We adopt the PWQ function

L(ζ) = ζT Piζ if ζ ∈ Qi , (33)

wherePi is a constant3 × 3 matrix andQi is a polyhedron.
We impose

L(ζ(k)) ≥ ̺i||ζ(k)||22 ∀ζ(k) ∈ Qi ∩ Z0 (34)

and

L(ζ(k + 1)) − L(ζ(k)) ≤ −ρ||ζ(k)||22 ∀ζ(k) ∈ Z0 , (35)

where̺i > 0 and ρ > 0. Note that (34) does not imply that
the matricesPi are positive definite since the inequalities are
required to hold only for the correspondingi-th polyhedron.
Furthermore,L(ζ) may be discontinuous across the polyhedral
boundaries.

Theorem 1: [32, Theorem 1] The equilibriumζ = 0 of
the above autonomous system is exponentially stable onZ0 if
there exists a PWQ Lyapunov functionL(ζ) as in (33)–(35).
For details on Lyapunov functions for PWA systems and
computation approaches, the reader is referred to [32] and [33],
respectively.

Example 3: Consider the nominalν-resolution model in
PWA form as in Example 1 (with the nominal parameters as
in Table I), and the corresponding state-feedback control law
derived in Example 2. An analysis shows that an equilibrium
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Fig. 6: Value of Lyapunov function along closed-loop trajectory during start-
up plotted on theX ′ plane

point x̄′

c with v̄′

o = v′

o,ref exists. This allows the derivation of
the closed-loop autonomous system with state vectorζ(k) ∈
Z. A subsequent evaluation of the autonomous system shows
that the control invariant subset is equal toX ′ × U , and
consequentlyZ0 = Z. This implies that for any initial state
within X ′ × U , all constraints will be met at all future time-
instants. In particular, a control input will always be found.

Using the Multi-Parametric Toolbox [29], a PWQ Lyapunov
function L(ζ) with ρ = 3.4 · 10−5 is found in 2.9 min on
a 2.8 GHz Pentium IV machine. Consequently, the nominal
closed-loop system is exponentially stable. We would like to
stress that stability is proven for allx′

c(k) ∈ X ′ × U and
not only locally aroundv′

o,ref . This is in contrast to classic
stability analysis techniques based on a linearized model that
allow proving stability only in a (small) neighborhood around
the operating point.

For the nominal start-up, the decaying value of the Lya-
punov function along the closed-loop trajectoryx′

c(k), k ∈ N0,
is depicted in Fig. 6. In this figure,L(x′

c(k) − x̄′

c) is plotted
over the two-dimensional state-spaceX ′, where the third
dimension corresponding tod(k − 1) ∈ U has been omitted.
Note that forX ′ the same scaling is used as in Fig. 5 to allow
a direct comparison.

VI. SIMULATION RESULTS

In this section, simulation results demonstrating the po-
tential advantages of the proposed control methodology are
presented. Specifically, we examine the closed-loop dynamical
behavior for the start-up, and the response to step changes in
the input voltage and the load resistance, respectively. The
simulations were carried out using the continuous-time non-
linear model of the converter (1)–(7) as the real plant, closing
the loop with the constrained optimal controller designed in
Section IV. The inductor current of the converter and the
input and output voltages were regarded to be measurable
as it is current industrial practice. Furthermore, we neglected
measurement noise. All variables in the following figures are

Parameters of the Converter

xc 10.294 p.u. xℓ 0.477 p.u. iℓ,max 3 p.u.

rc 0.001 p.u. rℓ 0.05 p.u. ro 1 p.u.

Parameters of the Controller

ν 3 N 2

q1 4 q2 0.1

TABLE I: Model and controller parameters used for the simulation results

normalized to theper unit system, and one time unit of the
time axis equals one switching period.

The circuit parameters of the converter are summarized in
Table I. The parameters were chosen to represent a realistic
problem set-up, describing for example a24 V to 12 V, 144 W
synchronous step-down converter operating with a switching
frequency of100 kHz. If not stated otherwise, the input voltage
is vs = 1.8 p.u. and the output resistance is given byro =
1 p.u.. The output voltage reference isvo,ref = 1 p.u..

The ν-resolution model uses the same parameters as the
physical plant model, with the difference that it is scaled
with respect tovs and that it always uses the nominal load
ro = 1 p.u.. Even though two subperiodsν in theν-resolution
modelling approach yield satisfactory results, we choseν = 3
to accurately model the nonlinear dynamics. The polyhedral
partition of the PWA model is visualized in Fig. 3.

Regarding the optimal control scheme, the penalty matrix is
chosen to beQ = diag(4, 0.1), putting a rather small weight on
the changes of the manipulated variable. In all simulations, the
prediction horizon is set toN = 2. Based on this, as detailed in
Section IV-C and Example 2, the PWA state-feedback control
law shown in Fig. 5 is derived for the nominal output resistance
ro = 1 p.u..

For the covariance matrices of the Kalman filter, we set
W1 = diag(0.1, 0.1, 100) andW2 = diag(1, 1). These are the
same both for the on and the off mode (corresponding toS1

being on and off, respectively).

A. Nominal Start-Up

Fig. 7 shows the step responses of the converter in nominal
operation during start-up with the initial statex(0) = [0 0]T

and d(−1) = 0. The following three control schemes are
compared: MPC with aν = 3 resolution model, MPC with
an averaged model (ν = 1) and the industrial standard – a
current mode control scheme. Since the latter is known to be
unstable for duty cycles above0.5 [34], we have included a
slope compensation scheme to remove this instability. This
addition and the tuning of the PI controller is done following
the design procedure summarized in [34].

For MPC with the ν = 3 resolution model the output
voltage reaches its steady state within ten switching periods
with an overshoot not exceeding3%. As can be seen the
current constraint is largely respected. The small violations
are due to the coarse resolution of theν-resolution model.
Specifically, the current constraint can only be imposed at
ν time-instants within the switching period. The steady state
error in the output voltage is with0.5% sufficiently small and
can be further reduced by increasingν.
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Fig. 7: Closed-loop responses during start-up in nominal operation for MPC
with ν = 3 resolution model (solid blue lines), MPC with averaged model
(dashed green lines), and current mode PI controller (dottedred lines)

The MPC scheme using the averaged model withν = 1
leads to a steady state output error of3.5%. Moreover, the
current constraint is violated by up to30%, thus making
a shorter rise time possible. The inaccurate averaged model
motivates the use of a hybrid model withν > 1. The current
mode PI controller, on the other hand, respects the current
constraint and yields the same rise time as MPC with the
ν = 3 resolution model. Yet, it exhibits a large overshoot of
almost 10% and a large settling time of approximately 30
switching periods.

B. Step Changes in Input Voltage

Operating at steady state with the nominal input voltage
vs = 1.8 p.u. a step change down tovs = 1.2 p.u. occurs at
time-instantk = 3.5. The closed-loop disturbance responses
for MPC with theν = 3 resolution model and for the current
mode PI controller are shown in Fig. 8. In contrast to the
PI controller, MPC rejects the disturbance well. Specifically,
the output voltage remains practically unaffected and the con-
troller settles at the new steady-state duty cycle very quickly
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1

(a) Output voltagevo(t)
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(b) Duty cycled(t)

Fig. 8: Closed-loop response to a step-down change in the input voltage from
vs = 1.8 p.u. tovs = 1.2 p.u. at time-instantk = 3.5 for MPC with ν = 3
resolution model (solid lines) and current mode PI controller(dotted lines)

within four switching periods. The relatively large undershoot
results from the constraintd(k) ≤ 1, as can be seen in Fig. 8.
Step-up changes in the input voltage lead to similar results.
The step-up case fromvs = 1.8 p.u. to vs = 3 p.u. can be
found in [2].

Summing up, disturbances in the input voltage are rejected
very effectively by the controller, and the output voltage is
quickly restored to its reference. This is because the state-
feedback control law is indirectly parameterized by the input
voltage by scaling the measured states, the output voltage
reference and the current limit with respect tovs. As a result,
the performance of the controller is not affected by changes
in vs.

C. Step Changes in Output Resistance

In a last step, we investigate the closed-loop performance in
the presence of major step changes in the output resistancero.
In the sequel, we add the Kalman filter to the MPC controller,
where the Kalman filter is used to adjust the output voltage
referencev′

o,ref to account for unmeasured changes inro.
Starting from the nominal loadro = 1 p.u., at time-instant

k = 3.5, a step down toro = 0.5 p.u. is applied. Fig. 9 depicts
the corresponding closed-loop performance for MPC and the
current mode PI controller. As can be observed, the dynamic
behavior of MPC is superior to the PI controller leading to
a three times smaller settling time. Step-up changes in the
output resistance lead to similar results. The step-up casefrom
ro = 1 p.u. toro = 4 p.u. can be found in [2].

In the last case, we examine a crucial aspect of the controller
operation, namely the system’s protection against excessive
load currents. Aiming at activating the current constraint, the
load drops atk = 3.5 from its nominal value toro = 0.05 p.u.
basically creating a short circuit at the output. The simulation
results in Fig. 10 show that the proposed controller respects
the current limit and forces the output voltagevo to drop
to the level that is needed to respect the constraint. We
would like to stress that this feature is explicitly addressed
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Fig. 9: Closed-loop response to a step-down change in the load resistor from
ro = 1 p.u. to ro = 0.5 p.u. at time-instantk = 3.5. The solid lines
correspond to MPC with a Kalman filter, the dotted lines to the current mode
PI controller

during the controller design by simply adding the current
constraint to control problem formulation. This is in contrast
to the classic PI controller design procedure, where a current
limiting protection scheme is not directly treated as part of the
controller design.

As anticipated in Section IV-D, the Kalman filter and
the inaccuracy introduced by the usage of the nominalro

are overshadowed by the presence of the current constraint.
Hence, for small changes inro, a Kalman filter is needed
for achieving a zero steady-state error – possibly causing a
slight deterioration of the dynamic performance. Yet for large
load drops, due to the activation of the current constraint,
the Kalman filter has hardly any effect on the closed-loop
dynamic behavior. In particular, the Kalman filter does not
lead to violations of this constraint. This argument justifies the
reasoning in Section IV-D, where we proposed the use of the
nominal ν-resolution model withro = 1 p.u. in combination
with a Kalman filter.

0 5 10 15 20 25

1

2

3

(a) Inductor currentiℓ(t)

0 5 10 15 20 25

0.2

0.4

0.6

0.8

1

(b) Output voltagevo(t)

0 5 10 15 20 25

0.2

0.4

0.6

0.8

(c) Duty cycled(t)

0 5 10 15 20 25

1

1.2

1.4

1.6

(d) Adjusted output voltage referencevo,ref (t)

Fig. 10: Closed-loop response to a short circuit (the load resistance is reduced
from ro = 1 p.u. toro = 0.05 p.u.) at time-instantk = 3.5. The solid lines
correspond to MPC with a Kalman filter, the dotted lines to the current mode
PI controller

VII. C ONCLUSIONS

We have presented a new modelling and control approach
for fixed frequency switch-mode dc-dc converters by formu-
lating a constrained optimal control problem using hybrid
systems methodologies. The method is presented here for
synchronous step-down dc-dc converters, but as shown in [35]
and [36], it is directly extendable to other converter topologies
of the same class.

More specifically, for the synchronous step-down converter,
a novel ν-resolution hybrid model was introduced to avoid
averaging and to model the converter arbitrarily accurately, and
a constrained finite time optimal control problem was formu-
lated and solved online and off-line. This control methodology
enabled us to explicitly take into account during the design
phase physical constraints, such as the restriction of the duty
cycle between zero and one, and safety constraints, such as
current limiting. The off-line solution to the control problem
yielded an explicit state-feedback controller defined on a
polyhedral partition of the state-space that allows the practical
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implementation of the proposed scheme.
This controller is parameterized not only by the measured

statesi′ℓ(k) andv′

o(k), which are scaled by the input voltage
vs, and the previous duty cycled(k−1), but also by the scaled
output voltage referencev′

o,ref (k) and the scaled current limit
i′ℓ,max(k). This allowed us to efficiently reject disturbances in
the input voltage of any magnitude. Moreover, the addition of a
Kalman filter estimating the output voltage error and adjusting
the voltage reference accordingly provides disturbance rejec-
tion to large changes in the output resistance. These include
short circuits, for which the output voltage is dropped such
that the safety constraint is respected. Most importantly,the
control invariant set was derived proving that the controller
renders the nominal system exponentially stable. Simulation
results have been provided demonstrating that the proposed
controller leads to a closed-loop system with very favorable
dynamical properties.

VIII. A CKNOWLEDGEMENTS

This work was supported by the two European Commission
research projects IST-2001-33520Control and Computation
(CC) and FP6-IST-511368Hybrid Control (HYCON).

REFERENCES

[1] D. P. Bertsekas,Dynamic Programming and Optimal Control. Athena
Scientific, 1995.

[2] T. Geyer, “Low complexity model predictive control in power electronics
and power systems,” Dr. sc. tech. thesis, Automatic Control Laboratory
ETH Zurich, 2005.

[3] R. D. Middlebrook and S.̌Cuk, “A general unified approach to modeling
switching power converter stages,” 1976, pp. 18–34.

[4] R. W. Erickson, S.̌Cuk, and R. D. Middlebrook, “Large signal modeling
and analysis of switching regulators,” 1982, pp. 240–250.

[5] T. Gupta, R. R. Boudreaux, R. M. Nelms, and J. Y. Hung, “Implemen-
tation of a fuzzy controller for DC-DC converters using an inexpensive
8-b microcontroller,” IEEE Trans. Ind. Electron., vol. 44, no. 5, pp.
661–669, Oct. 1997.

[6] F. Garofalo, P. Marino, S. Scala, and F. Vasca, “Control of DC/DC
converters with linear optimal feedback and nonlinear feedforward,”
IEEE Trans. Power Electron., vol. 9, no. 6, pp. 607–615, Nov. 1994.
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