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Abstract

This paper presents a new solution approach to the optimal control problem of
fixed frequency switch-mode DC-DC converters using hybrid systems method-
ologies. In particular, the notion of the N-step model is introduced to capture
the hybrid nature of these systems, and an optimal control problem is formu-
lated and solved online, which allows one to easily incorporate in the controller
design safety constraints such as current limiting. Simulation results are pro-
vided that demonstrate the prospect of this approach.
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1 Introduction

Switch-mode DC-DC converters are power electronic circuits that are used in
a large variety of applications due to their light weight, compact size and high
efficiency and reliability. They constitute the enabling technology in computer
power supplies, battery chargers, sensitive and demanding aerospace and medical
applications, and variable speed DC motor drives.

Their analysis and design both in the open and the closed loop have at-
tracted a wide research interest, and the quest for efficient control techniques is
of interest for both the research and the industrial community. Because the DC
voltage at the input is unregulated (consider for example the result of an AC
rectification) and the output power demand changes significantly over time con-
stituting a time-varying load, the scope is to achieve output voltage regulation
in the presence of input voltage and output load variations. The difficulties in
controlling DC-DC converters arise from their hybrid nature. In general, these
converters feature three different modes of operation, where each mode has an
associated linear continuous-time dynamic. Furthermore, constraints are present
which result from the converter topology. In particular, the manipulated vari-
able (duty cycle) is bounded between zero and one, and in the discontinuous
current mode a state (inductor current) is constrained to be nonnegative. Ad-
ditional constraints are imposed as safety measures, such as current limiting or
soft-starting, where the latter constitutes a constraint on the maximal derivative
of the current during start-up. The control problem is further complicated by



gross operating point changes due to input voltage and output load variations,
and model uncertainties.

Fixed-frequency switch-mode DC-DC converters are switched circuits that
transfer power from a DC input to a load. Using a semiconductor switch that is
periodically switched on and off and a low-pass filtering stage with an inductor
and a capacitor, a DC voltage with a small ripple is produced at the output. The
switch is driven by a pulse sequence that has a constant frequency (period), the
switching frequency fs (switching period Ts), which characterizes the operation
of the converter. The DC component of the output voltage can be regulated
through the duty cycle d that is defined by d = ton

Ts
, where ton represents the

interval within the switching period during which the switch is in conduction.
The main approach to model DC-DC converters is the method of state-space

averaging [19, 4]. In order to bypass the difficulties posed by the hybrid nature
of the system, an averaged continuous-time model is obtained that uses the
duty cycle as an input and describes the system’s slow dynamics. The result of
this procedure is still a nonlinear model due to the presence of multiplicative
terms involving the state variables and the duty cycle. The controller design is
carried out using linear control techniques for a model linearized around a specific
operating point. Apart from the limitations of this approximation, the averaging
procedure hides all information about the fast dynamics of the system, and
fast instabilities like subharmonic oscillations are not captured. A more rigorous
approach is to describe the system with discrete-time models that map the state
variables from the beginning to the end of the switching period [11, 14]. These
methods successfully describe many aspects of the complex DC-DC converters’
dynamics and are very suitable for analyzing phenomena like subharmonic and
chaotic oscillations that have been observed when DC-DC converters operate
in closed loop [8]. Nevertheless, for design purposes they still carry the basic
disadvantage of being nonlinear with respect to the duty cycle, and therefore do
not always offer a systematic approach to the controller design problem.

The main control objective for DC-DC converters is to drive the semiconduc-
tor switch with a duty cycle such that the DC component of the output voltage is
equal to its reference. This regulation needs to be maintained despite variations
in the load or the input voltage. The basic concept that is currently used for
the control of DC-DC converters is the Pulse Width Modulation (PWM): The
switch is turned on at the beginning of each switching period, and it is turned off
by the controller when a certain condition is fulfilled. A latch keeps the switch
turned off until the beginning of the next period. With this formulation, the
control problem is to decide at which instant within the switching period the
switch should be turned off.

In practice a variety of different control strategies are used, categorized in
voltage and current mode control schemes [20]. They are all PI-type controllers
tuned based on the above linearized average models. Simple rules, such as se-
lecting a cross-over frequency an order of magnitude smaller than the switching
frequency and a phase margin in the range of 45 to 60 degrees are used. Depend-
ing on the converter topology and the control strategy selected, these tuning



guidelines result in step responses with typical overshoots of up to five percent
and settling times in the range of 5− 30 switching periods.

In the literature a wide range of different strategies has been proposed for
improved controller design. The methods introduced vary from Fuzzy Logic [7]
to Linear Quadratic Regulators (LQR) [15, 16, 5], and from non-linear control
techniques [21, 22, 9] to feedforward control [12, 13]. The common element in all
these approaches is the use of simplified models for the description of the dynamic
behavior of switch-mode DC-DC converters. It is obvious that approximations
like the use of averaged or locally linearized models do not allow to capture the
complex dynamics that stem from the hybrid nature of DC-DC converters, and
unavoidably narrow the space of the explored phenomena producing results of
limited validity. In particular, for the LQR design in [15, 16] discrete-time models
linearized around an operating point are used, and for the nonlinear design
in [21, 22, 9] the hybrid nature of the DC-DC converters is bypassed by using
an averaged model for the controller design. Furthermore, none of the proposed
controllers allows to address the issue of constraints in the design procedure.
In more recent work, the hybrid nature of DC-DC converters is addressed for
modelling and controller design [23, 17].

Motivated by these difficulties, we present in this paper a novel approach
to the modelling and controller design problem for DC-DC converters, using a
synchronous step-down DC-DC converter as an illustrative example. The con-
verter is modelled as a hybrid system using the Mixed Logic Dynamic (MLD) [2]
framework. This leads to a model that is valid for the whole operating regime
and captures the evolution of the state variables within the period. Based on the
MLD model, we formulate and solve a finite time optimal control problem. This
results in a systematic controller design that achieves the objective of regulating
the output voltage to the reference despite input voltage and output load vari-
ations while satisfying the constraints. In particular, the control performance
does not degrade for changing operating points.

The paper is organized in the following way: In Section 2, the synchronous
step-down converter is modelled in the MLD framework by introducing the no-
tion of the N -step model. In Section 3, an optimal control problem incorporating
the above mentioned control objectives is formulated. Simulation results illus-
trating various aspects of the system’s behavior are given in Section 4. Finally,
conclusions and further research directions are discussed in Section 5.

2 Modelling the Synchronous Converter

We start by modelling the synchronous step-down converter in continuous-time,
and derive for each mode of operation the state-space equations. The model
incorporates the parasitic elements, in particular the internal resistance of the
inductor and the Equivalent Series Resistance (ESR) of the capacitor.
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Fig. 1. Topology of the step-down synchronous converter

2.1 Continuous-Time Model

The circuit topology of the synchronous step-down converter is shown in Fig. 1.
Using normalized quantities, ro denotes the output load which we assume to be
ohmic, rc the ESR of the capacitor, r` is the internal resistance of the inductor,
x` and xc represent the inductance and the capacitance of the low-pass filtering
stage, and vs denotes the input voltage. For every period k, a duty cycle d(k)
which is bounded between zero and one is chosen by the controller. For the
time interval kTs 6 t < (k + d(k))Ts the switch S1 is conducting and power is
transferred from the input directly to the load. While S1 is on, the switch S2 is
off and the diode D is reversed biased. At the end of this interval, S1 is turned
off and kept off until the beginning of the next cycle. The switch S2, which
operates dually with respect to S1, is turned on for (k+d(k))Ts 6 t < (k+1)Ts.
Together with the diode D, the switch S2 provides a path for the inductor’s
current i` regardless whether the latter is positive or negative.

Defining x(t) = [i`(t) vc(t)]T as the state vector, where i`(t) is the inductor
current and vc(t) the capacitor voltage, and given the duty cycle d(k) during the
k-th period, the system is described by the following set of affine continuous-time
state-space equations. While S1 is conducting, they amount to

ẋ(t) = Fx(t) + fvs, kTs 6 t < (k + d(k))Ts, (1)

and if S1 is off, the system evolves autonomously, i.e.

ẋ(t) = Fx(t), (k + d(k))Ts 6 t < (k + 1)Ts. (2)

where the matrices F and f are given by

F =
[− 1

x`
(r` + rorc

ro+rc
) − 1

x`

ro

ro+rc
1
xc

ro

ro+rc
− 1

xc

1
ro+rc

]
, f =

[
1
x`

0

]
. (3)

The output voltage vo(t) across the load ro is expressed as a function of the
states through

vo(t) = gT x(t) (4)



with
g =

[ rorc

ro+rc

ro

ro+rc

]T
. (5)

The output variable which is of main interest from a control point of view, how-
ever, is the output voltage error which is obtained by integrating the difference
between the output voltage and its reference over the k-th switching period, i.e.

vo,err(k) =
∫ (k+1)Ts

kTs

(vo(t)− vo,ref ) dt, (6)

where vo,ref denotes the reference of the output voltage.
Summing up, the synchronous converter features two operation modes with

two different affine dynamics. Both modes differ only in the affine expression
and have the same output function. At the beginning of each period, always the
first mode with (1) is active. The duty cycle d(k) determines the transition time
from the first to the second mode which evolves according to (2).

It is important to note that in current practice the inductor current i`(k) and
the output voltage vo(k) can be directly measured. Based on these two measure-
ments, the second state vc(k) can be easily computed. Alternatively, given the
fact that the capacitor’s ESR is very small, assuming that the capacitor voltage
vc(k) is equal to the output voltage vo(k) at the sampling instants k introduces
only a small error. Variations in the input voltage vs are also considered to be
measurable in accordance with common practice [20].

The constraints that are present in the converter model come from two dif-
ferent sources. By definition, the duty cycle d(k) is constrained between zero and
one. The fact that the semiconductor devices and the load can physically handle
only a certain maximal current poses an additional upper bound on the inductor
current, given by i`(t) < i`,max. This constraint is known as the current limit
and is application specific.

2.2 N-step Discrete-Time Hybrid Model

The goal of this section is to derive a model of the synchronous step-down
converter that is suitable as a prediction model for the optimal control problem
which we will formulate in the Section 3. This model should include the following
properties. First, it is natural to formulate the model and the controller in the
discrete-time domain, as the manipulated variable given by the duty cycle is
constant within a period Ts and changes only at every time-instant kTs, k ∈ N.
Second, it would be beneficial to capture the evolution of the states also within
one period, as this would enable us to impose constraints not only on the states at
time-instants kTs but also on intermediate values. This is particularly important
for the inductor current which can vary drastically within one period and would
allow us to keep its peaks below the current limit. Third, the model needs to
yield an approximation of the output voltage error. Most important, as the
converter is intrinsically hybrid in nature, we aim to retain the structure of the
two operation modes and account for the hybrid character.
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Motivated by these considerations, we introduce the N -step modelling ap-
proach that accounts for all the above requested properties by dividing the period
of length Ts into N subperiods of length τs = Ts/N with N ∈ N, N ≥ 2. This
concept is illustrated in Fig 2. We denote the states within a subperiod sampled
with τs by ξ(n), and we refer to the discrete time-instants of the subperiods
by n, where n ∈ {0, 1, . . . , N − 1}. Furthermore, by definition, ξ(0) = x(k) and
x(k + 1) = ξ(N − 1) hold.

Next, we introduce N binary variables

σn = true ⇐⇒ d(k) ≥ n

N
, n = 0, . . . , N − 1 (7)

which represent the sampled switch position of S1 at time-instants nτs. Recall
that the switch S2 is dually operated with respect to S1.

For each subperiod, we introduce the two modes discussed above (switch
closed and open, respectively) plus an additional third mode that captures the
transition from mode 1 to 2. More specifically, the modes are (i) the switch S1

remains closed for the whole subperiod, (ii) the switch S1 is open for the whole
subperiod, and (iii) the switch S1 is opening within the subperiod. Hence, for
the n-th subperiod, the state-update equations amount to

ξ(n + 1) =





Φ ξ(n) + Ψ, if σn ∧ σn+1,
Φ ξ(n), if σ̄n,
Φ ξ(n) + Ψ(Nd(k)− n), if σn ∧ σ̄n+1,

(8)

where Φ and Ψ are the discrete-time representations of F and f as defined in (3)
with sampling time τs. The third (auxiliary) mode refers to the mode transition



where the switch S1 opens within a subperiod. Note that if we are in the third
mode, i.e. σn ∧ σ̄n+1 holds, Nd(k) − n is bounded by zero and one. Thus,
the third mode constitutes a weighted average of modes one and two. The error
introduced by averaging can be made arbitrarily small by increasing N .

Using the sampled output voltage given by

vo(n) = gT ξ(n), (9)

we approximate the voltage error integral (6) for the k-th period in the following
way.

vo,err(k) =
N−2∑
n=0

vo(n) + vo(n + 1)
2(N − 1)

− vo,ref (10)

In summary, the N -step modelling approach provides a description of the
state evolution within one period. In particular, the discrete-time sequence of
ξ(n), n = 0, . . . , N − 1 is an accurate sampled representation of the continuous-
time evolution of x(t) for t ∈ [kTs, (k + 1)Ts]. The only approximation that has
been introduced appears in the third mode of (8) when the switch S1 is turned
off.

2.3 MLD Framework

The three operation modes of the N -step model call for appropriate modelling us-
ing hybrid methodologies. As basically all discrete-time hybrid modelling schemes
can be transformed into each other, we employ the Mixed Logical Dynamic
(MLD) framework as it allows for convenient modelling using Hysdel (HYbrid
System DEscription Language) [24], and it is well-suited for optimal control,
namely Model Predictive Control (MPC) computations. In particular, efficient
conversion tools are available [6] to transform MLD models into piecewise affine
(PWA) models. A PWA representation will be needed at a later stage to pre-
compute offline the MPC feedback law for the whole state space that renders the
optimal controller applicable for online implementations with sampling times in
the range of several µs [3].

The general MLD form of a hybrid system introduced in [2] is

x(k + 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k) (11a)
y(k) = Cx(k) + D1u(k) + D2δ(k) + D3z(k) (11b)

E2δ(k) + E3z(k) ≤ E4x(k) + E1u(k) + E5, (11c)

where k ∈ N is again the discrete time-instant, and x ∈ Rnc × {0, 1}n` denotes
the states, u ∈ Rmc × {0, 1}m` the inputs and y ∈ Rpc × {0, 1}p` the outputs,
with both continuous and binary components. Furthermore, δ ∈ {0, 1}r` and
z ∈ Rrc represent binary and auxiliary continuous variables, respectively. These
variables are introduced when translating propositional logic or PWA functions
into linear inequalities. All constraints on states, inputs and auxiliary variables
are summarized in the inequality (11c). Note that the equations (11a) and (11b)



are linear; the nonlinearity is hidden in the integrality constraints over the binary
variables. We consider MLD systems that are completely well-posed [2], i.e. for
given x(k) and u(k), the values of δ(k) and z(k) are uniquely defined by the
inequality (11c). This assumption is not restrictive and is always satisfied when
real plants are described in the MLD form [2].

The above procedure yields an MLD system with two states, 7N + 3 z-
variables, N δ-variables and 24N + 18 inequality constraints. The derivation of
the MLD system is performed by the compiler Hysdel generating the matrices
of the MLD system starting from a high-level description of the system.

3 Optimal Control

3.1 Model Predictive Control

Model Predictive Control (MPC) has been used successfully for a long time in
the process industry and recently also for hybrid systems. As shown in [2], MPC
is well suited for the control of hybrid systems described in the MLD framework.
The control action is obtained by minimizing an objective function over a finite
or infinite horizon subject to the mixed-integer linear inequality constraints of
the MLD model (11) and the physical constraints on the manipulated variables.
Depending on the norm used in the objective function, this minimization problem
amounts to solving a Mixed-Integer Linear Program (MILP) or Mixed-Integer
Quadratic Program (MIQP).

The major advantage of MPC is its straight-forward design procedure. Given
a (linear or hybrid) model of the system, one only needs to set up an objective
function that incorporates the control objectives. Additional hard (physical)
constraints can be easily dealt with by adding them as inequality constraints,
whereas soft constraints can be accounted for in the objective function using
penalties. For details concerning the set up of the MPC formulation in connection
with MLD models, the reader is referred to [2] and [1]. Details about MPC can
be found in [18].

3.2 Optimal Control Problem

The control objectives are to regulate the average output voltage to its reference
as fast and with as little overshoot as possible, or equivalently, to minimize the
output voltage error vo,err(k), despite changes in the input voltage vs or changes
in the load resistance ro, and to respect the constraint on the inductor current.
Let

∆d(k) = d(k)− d(k − 1) (12)

denote the difference between two consecutive duty cycles. To allow for aggressive
control moves when the voltage error is large but to force the controller to act
cautiously if the output voltage is close to the reference and the voltage error is
small, we penalize a saturated version of ∆d(k) using the variable

εd(k) =
{

∆d(k), if |∆d(k)| ≤ ∆dmax,
∆dmax, else (13)



rather than ∆d(k) directly. To account for the bound i`,max on the inductor
current, we introduce the variable εi(k) that describes the degree of the violation
of this constraint.

εi(k) =
{

0, if i`(k) ≤ i`,max,
i`(k)− i`,max, else (14)

By associating a large penalty weight with εi(k), the upper bound on the in-
ductor current is modelled as a soft constraint. Note that for (14) an additional
binary variable is not needed as it can be represented by a slack variable.

Define the penalty matrix Q = diag(q1, q2, q3) with q1, q2, q3 ∈ R+ and the
vector ε(k) = [vo,err(k), εd(k), εi(k)]T , with vo,err(k) as defined in (10). Con-
sider the objective function

J(D(k), x(k), d(k − 1)) =
L−1∑

`=0

‖Q ε(k + `|k)‖1 (15)

which penalizes the predicted evolution of ε(k + `|k) from time-instant k on
over the finite horizon L using the 1-norm. The control law at time-instant k
is then obtained by minimizing the objective function (15) over the sequence
of control moves D(k) = [d(k), . . . , d(k + L − 1)]T subject to the mixed-integer
linear inequality constraints of the MLD model (11), the physical constraint on
the duty cycle d(k) ∈ [0, 1], and the expressions (12)-(14). As we are using the
1-norm, this minimization problem is a Mixed-Integer Linear Program (MILP)
for which efficient solvers exist.

4 Simulation Results

In this section, simulation results demonstrating the potential advantages of the
proposed control methodology are presented. The circuit parameters used in the
simulations were chosen to represent a realistic problem set-up, describing for
example a 48 V to 32 V, 100 W step-down DC-DC converter. Expressed in the
per unit system, they are given by xc = 600 p.u., x` = 3 p.u., rc = 0.005 p.u.
and r` = 0.05 p.u. If not otherwise stated, the output resistance is given by
ro = 1 p.u. and the output voltage reference is vo,ref = 1.

The four cases included here represent different scenarios that are of interest
in practical applications and pose performance challenges for any control scheme.
In all cases, the current limit for the converter has been set to i`,max = 8 p.u.
The penalty matrix is chosen to be Q = diag(5, 1, 1000), putting a rather small
weight on the changes of the manipulated variable and a very large penalty
on the violation of the current limit. Furthermore, the saturation limit for the
maximal cost on the changes in the control moves is chosen as ∆dmax = 0.02.
The prediction horizon in all cases is L = 4. Although even 10 subperiods yield
very accurate results, N = 20 subperiods are chosen for the N -step model to very
accurately model the nonlinear dynamics. All the simulation results presented
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Fig. 3. Step response of the converter in nominal operation

in the following figures are normalized, including the time scale where one time
unit is equal to one switching period.

The first case presented in Fig. 3 shows the step response of the converter in
nominal operation during start-up. The initial state is given by x(0) = [0, 0]T ,
the input voltage is vs = 1.5 p.u. and the reference for the output is vo,ref = 1p.u.
The current constraint is respected by the peaks of the inductor current during
start-up, and the output voltage reaches its steady state within 15 switching pe-
riods with practically no overshoot. As mentioned in the introduction, settling
times of up to 30 periods and overshoots of 5 percent are commonly encountered
when using PI-type controllers. The difference between the ripples of the capac-
itor and the input voltages is due to the presence of the ESR of the capacitor
and is an inherent characteristic of switch-mode DC-DC converters. This also
holds for the ripple that is observed in the inductor current.
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Fig. 4. Response of the converter to a step change in the input voltage from vs =
1.5 p.u. to vs = 3p.u. at time-instant k = 4

In the second case, the converter is initially at steady state when a step
change in the input voltage from vs = 1.5 p.u. to vs = 3 p.u. is applied at time-
instant k = 4. As can be seen from Fig. 4, the output voltage remains practically
unaffected and the controller finds the new steady state duty cycle very quickly.
This new duty cycle is also responsible, due to the open-loop characteristics
of the converter, for a larger ripple in the inductor current. For such a rapid
response to be possible, the input voltage vs is considered to be measurable and
fed to the controller. This technique is also used in current practice, where vs

is measured and used in feed-forward schemes in order to achieve faster output
voltage regulation with respect to input voltage changes [20].

In the following two cases, the response of the converter to output load
changes is addressed. The load resistance ro can vary significantly over time,
featuring both slow changes and step changes. Since the controller is designed
through a model-based approach, it is important that some estimation proce-
dure is employed in order to update the model used for the online optimization.
The basic concept of such a scheme is briefly outlined here.

Given the measured states at time-instants k − 1 and k, and the duty cycle
at time k−1, we observe the following. Firstly, for a given combination of states
x(k− 1), duty cycle d(k− 1) and load resistance ro(k− 1) at time-instant k− 1,
computing the states at time-instants k is straightforward and involves only
matrix multiplications. We refer to these states as predicted states x̂(k|k − 1)
using ro(k − 1). Secondly, it can be shown that, when varying ro(k − 1), the
2-norm of the difference between the measured and the predicted states

||x(k)− x̂(k|k − 1)||2 (16)

is quasi-convex in ro(k−1). Thus we can employ standard bisection optimization
techniques to minimize (16). This yields at time-instant k the estimate r̂o(k−1)
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Fig. 5. Response of the converter to a step change in the load resistance from ro = 1p.u.
to ro = 1.5 p.u. at time-instant k = 4

of the load resistance. Such an estimator scheme works well if the measurement
noise and the model uncertainties are negligible as is the case here. In general,
however, the load resistor estimates need to be further processed and smoothed
(for example by a low-pass filter) making the use of an extended Kalman filter
preferable [10].

Employing the above described estimation scheme, the response of the con-
verter to a step change in the output load is presented in Fig. 5. Starting from
the steady state, the load steps up at time-instant k = 4 from ro = 1 p.u. to
ro = 1.5 p.u. The new parameter for the output resistance is estimated within
one switching period after the step change, and the model used for the optimal
control problem is updated accordingly. As can be seen from both the current
and the voltage responses, this disturbance is rejected very effectively by the
controller, and the output voltage is quickly restored to the reference.

In the last case, we examine a crucial aspect of the controller operation,
namely the system’s protection against excessive load currents. The load drops
at k = 4 from its nominal value to a very small one (namely to ro = 0.05),
almost creating a short circuit at the output. The simulation results in Fig. 6
show that the controller respects the current limit and forces the output voltage
to drop to the level that is needed in order to keep the current bounded.

This example shows that the two control objectives minimize the output
voltage error and respect the constraint on the inductor current are potentially
contradicting each other. By putting a very large penalty on the violation of
the soft constraint, we have prioritized these objectives making sure that the
latter objective is always fulfilled and the converter is not destroyed by excessive
current. Such a feature is utilized in all practical applications through various
protection schemes, but is usually not considered as part of the controller design.
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Fig. 6. Response of the converter to a step change in the load resistance from ro = 1p.u.
to ro = 0.05 p.u. at time-instant k = 4

5 Conclusions and Outlook

In this paper, we have presented a new solution approach to the optimal con-
trol problem of fixed frequency switch-mode DC-DC converters using hybrid
systems methodologies. A novel N -step model was introduced to capture the
hybrid nature of these systems within one switching period, and an optimal con-
trol problem was formulated and solved online. The use of MPC has allowed us
to explicitly take into account during the controller design physical constraints,
such as the restriction of the duty cycle between zero and one, and safety con-
straints, such as current limiting. Simulation results have been provided which
demonstrate that this approach leads to a closed-loop system with very favorable
dynamical properties.

This study has been limited to the case where the state-updates and the pro-
posed load estimation scheme are considered to be ideal. These assumptions rep-



resent shortcomings that in the course of further research need to be addressed.
In particular, the robustness of the proposed control scheme with respect to
model uncertainties and measurement noise, and the asymptotic stability of the
closed-loop system need to be investigated. Furthermore, the online solution of
the optimal control problem requires computation times that are well above
the sampling times used in real-life applications. Therefore, the experimental
verification of the foreseen benefits of the proposed approach also requires the
computation of the optimal state-feedback control law parameterized over the
state space. This operation reduces the online optimization involving MILPs to
a simple search in a look-up table requiring only matrix multiplications.
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4. R.W. Erickson, S. Čuk, and R. D. Middlebrook. Large signal modeling and analysis
of switching regulators. In IEEE Power Electronics Specialists Conference Records,
pages 240–250, 1982.

5. F. Garofalo, P. Marino, S. Scala, and F. Vasca. Control of DC/DC converters with
linear optimal feedback and nonlinear feedforward. IEEE Transactions on Power
Electronics, 9(6):607–615, November 1994.

6. T. Geyer, F. D. Torrisi, and M. Morari. Efficient mode enumeration of composi-
tional hybrid systems. In A. Pnueli and O. Maler, editors, Hybrid Systems: Com-
putation and Control, volume 2623 of Lecture Notes in Computer Science, pages
216–232. Springer-Verlag, 2003.

7. T. Gupta, R. R. Boudreaux, R. M. Nelms, and J. Y. Hung. Implementation of a
fuzzy controller for DC-DC converters using an inexpensive 8-b microcontroller.
IEEE Transactions on Industrial Electronics, 44(5):661–669, October 1997.

8. D. C. Hamill, J. H. B. Deane, and D. Jefferies. Modeling of chaotic DC-DC con-
verters by iterated nonlinear mappings. IEEE Transactions on Power Electronics,
7(1):25–36, January 1992.

9. S. Hiti and D. Borojevic. Robust nonlinear control for the boost converter. IEEE
Transactions on Power Electronics, 10(6):651–658, November 1995.

10. A. H. Jazwinski. Stochastic Processes and Filtering Theory. Academic Press, 1970.
11. J.G. Kassakian, M.F. Schlecht, and G.C. Verghese. Principles of Power Electronics.

Addison-Wesley, 1991.
12. M. K. Kazimierczuk and A. Massarini. Feedforward control dynamic of DC/DC

PWM boost converter. IEEE Transactions on Circuits and Systems-I: Fundamen-
tal Theory and Applications, 44(2):143–149, February 1997.

13. M. K. Kazimierczuk and L. A. Starman. Dynamic performance of PWM DC/DC
boost converter with input voltage feedforward control. IEEE Transactions on
Circuits and Systems-I: Fundamental Theory and Applications, 46(12):1473–1481,
December 1999.



14. G.Th. Kostakis, S.N. Manias, and N.I. Margaris. A generalized method for cal-
culating the RMS values of switching power converters. IEEE Transactions on
Power Electronics, 15(4):616–625, July 2000.

15. F. H. F. Leung, P. K. S. Tam, and C. K. Li. The control of switching DC-DC
converters – a general LQR problem. IEEE Transactions on Industrial Electronics,
38(1):65–71, February 1991.

16. F. H. F. Leung, P. K. S. Tam, and C. K. Li. An improved LQR-based controller
for switching DC-DC converters. IEEE Transactions on Industrial Electronics,
40(5):521–528, October 1993.

17. B. Lincoln. Dynamic Programming and Time-Varying Delay Systems. PhD thesis,
Department of Automatic Control, Lund Institute of Technology, Sweden, 2003.

18. J.M. Maciejowski. Predictive Control. Prentice Hall, 2002.
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