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Abstract—Even though direct model predictive control (MPC)
schemes almost exclusively use a prediction horizon of one in
power electronics applications, the use of longer horizons offers
significant performance benefits. This statement is underlined in
this paper for a medium-voltage variable speed drive system,
which consists of a three-level inverter, an LC filter and an
induction machine. The proposed MPC controller simultaneously
regulates the inverter current, capacitor voltage and stator cur-
rent along given references, by manipulating the switch positions
of the inverter. As will be shown, extending the prediction horizon
significantly reduces the oscillations due to the filter resonance.
For sufficiently long horizons, such as ten, low total harmonic
distortions of the stator current can be achieved at low device
switching frequencies. An additional active damping loop is not
required, adding to the conceptual simplicity of the proposed
control scheme.

I. INTRODUCTION
Since the mid 2000s, model predictive control (MPC) [1]

has been receiving increased attention by the power electronics
community, particularly so called direct MPC methods that
directly manipulate the switch positions of the semiconductors
and hence do not require a modulator [2], [3]. The control
problem is formulated as a reference tracking problem, in
which any quantity of the power electronic system, such as
a current, electromagnetic torque, angular speed, flux linkage,
neutral point potential, real and reactive power, etc., can be
regulated along a given reference [4]. This approach is often
referred to as finite control set (FCS) MPC. According to the
optimal control paradigm [1], a penalty on the switching effort
should be added, but is alas often omitted. The optimization
problem underlying direct MPC is a linear or nonlinear mixed-
integer program [5], [6], which is predominantly solved using
enumeration [7].
In FCS MPC, the prediction horizon is almost always set

to one [8]. Indeed, it is commonly believed that a horizon
of one suffices and that the use of longer horizons carries
no performance benefits. This common belief might result
from the fact that due to the combinatorial explosion of
the number of possible solutions, investigating the potential
benefits of long horizons is intrinsically hard, and horizons
of two or three often offer only an incremental benefit [9].
Another reason might be that researchers have so far mostly
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focused on inverters directly connected to the load, such as
an RL load [7]. In an orthogonal coordinate system, the fast
(current) dynamic of such a setup constitutes a first-order
system, i.e. in each coordinate axis the transfer function from
the manipulated variable (the inverter voltage) to the load
current (the controlled variable) is of first order, implying that
these power electronic systems can be controlled with ease.
For these reasons, very few results are available in the liter-

ature with prediction horizons exceeding one, despite the fact
that there are a few strategies that allow the implementation
of demanding MPC schemes with long prediction horizons in
real time [10], [11]. With regard to direct MPC and reference
tracking, i.e. FCS MPC, the authors are aware of only two
exceptions, namely [12], in which a horizon of two is used,
and [13]. In the latter, a heuristic is proposed to reduce
the number of switching sequences for longer horizons1. In
addition to that, an FCS MPC scheme was proposed in [14]
with a one-step control horizon, but with a long output horizon
of up to ten steps.
To solve the control problem for long prediction horizons

such as ten, a branch and bound technique called sphere
decoding can be successfully adopted [15], [16]. For a three-
level converter, when increasing the prediction horizon from
one to ten, the current distortions can be reduced by 20%,
while keeping the switching frequency constant [9]. The main
benefit of long horizons, however, is expected to become
evident when considering power electronic systems of so
called higher order. In an orthogonal coordinate system, the
fast dynamics of such systems feature more than one state
variable per coordinate axis. As an example, consider an
inverter driving an induction machine via an intermediate LC
filter [14], [17], [18]. Ignoring the rotor dynamics, which are
slow compared to the dynamics of the stator and LC filter, this
system constitutes two third-order systems in an orthogonal
coordinate system. To control such systems, it is common
practice to design two single-input single-output (SISO) PI
controller for the inverter current and to add an additional
active damping loop that reigns in the higher-order system, in
this case its filter resonance [19].
Another more elegant—and in the end more promising—

approach is proposed in this paper that treats the higher-order

1Moreover, a two-step prediction approach has been proposed in [4]. In
here, in a first step, the computation delay is compensated, followed by a
standard predictive controller with horizon one. Therefore, this is considered
to be a horizon one approach.

978-1-4799-5776-7/14/$31.00 ©2014 IEEE 3520



Vdc
2

Vdc
2

NNN
a

b c

iinv,abc is,abc

vc,abc

L

C

IM

Fig. 1: (a) Three-level NPC voltage source inverter with an output LC filter
driving an induction motor (IM). The inverter has a constant neutral point
potential.

system as a multiple-input multiple-output (MIMO) system
and designs a single MIMO controller for it. This can be easily
accomplished with MPC, by regulating the inverter current,
capacitor voltage and stator current simultaneously. For MPC
to perform well, however, a fairly long prediction horizon is
required that covers a significant fraction of the oscillation
period of the filter resonance. To solve the underlying integer
optimization problem, the sphere decoding algorithm is used.
As an illustrative example, a neutral point clamped (NPC)
inverter with a subsequent LC filter driving a medium-voltage
(MV) induction machine is considered in this paper. It will
be shown that for this system setup, direct MPC achieves low
stator current distortions and a low device switching frequency
when using a long prediction horizon. An additional damping
loop is not required.

II. PHYSICAL MODEL OF THE SYSTEM

Consider a variable speed drive system consisting of a three-
level NPC voltage source inverter, an LC filter and a MV
induction machine, as shown in Fig. 1. The dc-link voltage of
the inverter Vdc is assumed to be constant and the neutral point
potential N is fixed at zero. Note that the analysis presented
below is based on normalized quantities. Moreover, as it is
common practice, the transformation ξαβ = Kξabc is used
to transform all variables ξabc = [ξa ξb ξc]

T from the three-
phase (abc) system to ξαβ = [ξα ξβ ]

T in the stationary and
orthogonal αβ system, via the transformation matrix

K =
2

3

[
1 − 1

2 − 1
2

0
√
3
2 −

√
3
2

]
. (1)

Hereafter, to simplify the notation, the subscript αβ is dropped
from the vectors in the αβ plane, unless otherwise stated.

A. Model of the Inverter

The switch positions in the three phase legs of the in-
verter can be represented by the integer variables ua, ub, uc ∈
U = {−1, 0, 1}. Depending on the switch position, the inverter
produces the phase voltages −Vdc

2 , 0, Vdc
2 . Introducing the vec-

tor uabc = [ua ub uc]
T , the output voltage of the inverter can

be written as

v =
Vdc

2
u =

Vdc

2
Kuabc . (2)

B. Model of the LC Filter

A symmetrical three-phase LC filter with the inductor L and
its internal resistor R1, and the capacitor C with the internal
resistor R2 is placed between the inverter and the machine
to reduce the harmonic distortions at the stator windings. The
state-space equations of the filter (in the αβ plane) are

diinv
dt

=
1

L

(
v −R1iinv − vc −R2(iinv − is)

)
(3a)

dvc

dt
=

1

C
(iinv − is) , (3b)

where iinv is the inverter current, v the output voltage of the
inverter as given by (2), vc the capacitor voltage and is the
stator current. The voltage applied to the stator windings of
the machine is

vs = vc +R2(iinv − is) . (4)

C. Model of the Machine

For the mathematical modeling of the squirrel-cage induc-
tion motor in the αβ plane, the stator current is and the rotor
flux ψr are chosen as state variables. The dynamic of the rotor
angular speed ωr is neglected, i.e. the speed is considered to be
a time-varying parameter. The continuous-time state equations
are [20]

dis
dt

= −
1

τs
is +

(
1

τr
I − ωr

[
0 −1

1 0

])
Lm

Φ
ψr +

Lr

Φ
vs

(5a)

dψr

dt
=

Lm

τr
is −

1

τr
ψr + ωr

[
0 −1

1 0

]
ψr . (5b)

In (5), Rs (Rr) denotes the stator (rotor) resistance, Lls

(Llr) the stator (rotor) reactance and Lm the mutual reac-
tance. We also define Ls = Lls + Lm, Lr = Llr + Lm and
Φ = LsLr − L2

m. Moreover, the time-constants of the stator
and rotor are τs = LrΦ

RsL2
r
+RrL2

m

and τr = Lr

Rr

, respectively. I
denotes the identity matrix of appropriate dimension (here two
by two). All rotor quantities are referred to the stator circuit.
The electromagnetic torque is given by

Te =
Lm

Lr

(ψr × is) =
Lm

Lr

(ψrαisβ − ψrβisα) . (6)

III. DIRECT MODEL PREDICTIVE CONTROL WITH
REFERENCE TRACKING

The block diagram of the proposed MPC scheme with
reference tracking is depicted in Fig. 2. The inverter switch
positions are directly set by the MPC algorithm, thus not
requiring the use of a modulator. The controller predicts the
future evolution of the trajectories of concern as a function
of the switching sequence. This prediction is based on the
measurements of the inverter current, capacitor voltage and
stator current, as well as on the estimate of the rotor flux,
which is obtained by a flux observer. The switching sequence
is chosen that minimizes a performance criterion.
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Fig. 2: Direct model predictive control with reference tracking for the drive
system in Fig. 1.

A. Internal Model of the Controller
The controller is based on a discrete-time state-space model

of the system, which is formulated in the αβ frame. The rotor
speed ωr is assumed to be constant within the prediction
horizon, which turns it into a time-varying parameter. The
system state vector x ∈ R

8 includes the inverter current,
capacitor voltage, stator current and rotor flux

x =
[
iTinv vT

c iTs ψT
r

]T
. (7)

The three-phase switch position uabc ∈ U3 constitutes the
input vector, whereas the inverter current, the capacitor voltage
and the stator current are the output variables, which form the
output vector

y =
[
iTinv vT

c iTs

]T
. (8)

Based on the above and the model in Section II (see (2)–(5)),
the state-space prediction model of the drive in the continuous-
time domain can be derived, which is of the form

dx(t)

dt
= Dx(t) +Euabc(t) (9a)

y(t) = Fx(t) . (9b)

The corresponding matrices D, E, and F are provided in
the appendix. Using exact Euler discretization, the discrete-
time prediction model

x(k + 1) = Ax(k) +Buabc(k) (10a)
y(k) = Cx(k) , (10b)

results with A = e
DTs , B = −D−1(I −A)E and C = E.

Furthermore, e is the matrix exponential, Ts the sampling
interval, k ∈ N, and I is—as previously defined—the identity
matrix.

B. Constrained Optimal Control Problem
The control objectives are the following. The stator current

is should track its reference is,ref accurately, and the total
harmonic distortion (THD) of the stator current should be

small. Similarly, the inverter current iinv and the capacitor
voltage vc are to follow their respective reference values. The
switching frequency is to be minimized.
At time-step k, these control objectives can be mapped into

the objective function

J(k) =
k+N−1∑
�=k

||yref(�+1|k)−y(�+1|k)||2Q+||Δuabc(�|k)||
2
R,

(11)
which penalizes the variables of interest over the
finite prediction horizon of N time steps. In (11)
yref = [iTinv,ref v

T
c,ref i

T
s,ref]

T ∈ R
6 holds the reference

values of the six output variables. The term
Δuabc(k) = uabc(k)− uabc(k − 1) relates to the switching
effort; by adding it to the objective function, the inverter
switching frequency can be minimized. Finally, Q and R are
the weighting matrices2, where Q ∈ R

6×6, and R ∈ R
3×3

are diagonal and positive definite matrices.
The penalties on the deviations of the output variables from

their references, iinv,ref − iinv,vc,ref − vc, is,ref − is, i.e. the
diagonal entries of Q, differ from each other. They allow
one to prioritize the tracking accuracy among the three output
variables. Typically, priority is given to the stator current, by
choosing large penalties for the corresponding diagonal entries
in Q. The diagonal entries of R are equal, i.e. R = λuI , with
λu ∈ R

+. The ratio between R and Q decides on the trade-
off between the overall tracking accuracy and the switching
effort. When the tracking of the stator current is prioritized
in Q, this trade-off is equivalent to the trade-off between the
stator current THD and the switching frequency of the inverter.
To obtain the control input at time-step k, the

objective function (11) is minimized over the
optimization variable, i.e. the switching sequence
U(k) = [uT

abc(k) u
T
abc(k + 1) . . .uT

abc(k +N − 1)]T over
the horizon N . With this, the optimization problem underlying
MPC can be formulated as

minimize
U(k)

J(k) (12a)

subject to U(k) ∈ U (12b)
||Δuabc(�)||∞ ≤ 1 , ∀ � = k, . . . , k +N − 1 ,

(12c)

with U = U × · · · × U being the N -times Cartesian product
of the set U , where U = U × U × U denotes the set of
discrete three-phase switch positions. Furthermore, the so-
called switching constraints are imposed by (12c). Thanks to
those, a shoot-through in the inverter is avoided, by ruling out
switching transitions that would lead to a switching transition
between the upper and lower dc-link rails, i.e. from u = 1 to
u = −1, and vice versa.
The optimal switching sequence U∗(k) is obtained by

minimizing (12). Out of U∗(k), only the first element u∗
abc(k)

is applied to the inverter and the remainder of U∗(k) is dis-
carded. At the next time-step k+1, the optimization procedure

2The squared norm weighted with the positive definite matrix W is given
by ||ξ||2

W
= ξTWξ.
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ρ

Fig. 3: The principle of the sphere decoder: A (two-dimensional) sphere of
radius ρ (shown as straight (blue) line) centered at the unconstrained solution
(shown as small (red) circle) includes several integer points of the lattice
(shown as small (black) circles). One of these points is the integer solution
of the ILS problem.

is repeated based on new measurements and estimates over a
shifted prediction horizon, according to the receding horizon
policy [1], which provides feedback and adds robustness to
the closed-loop operation.

C. Reformulating and Solving the Optimization Problem
In a subsequent step, and in order to acquire the optimal

solution U∗(k) of problem (12) in a computationally efficient
manner, problem (12) is formulated as an integer least-squares
(ILS) problem; by doing so the computations to be performed
in real time are reduced. The procedure to rewrite the opti-
mization problem as an ILS is similar to the one proposed
in [15].
To start with, (11) can be written in vector form as

J = ||Γx(k)+ΥU(k)−Y ref||
2
Q+||SU(k)−Ξuabc(k−1)||2R ,

(13)
where Y (k) is the output sequence over the horizon, i.e.
Y (k) = [yT (k + 1) . . .yT (k +N)]T . It is given by

Y (k) = Γx(k) +ΥU(k) , (14)

whereas Y ref(k) is the corresponding output reference se-
quence, i.e. Y ref(k) = [yT

ref(k + 1) . . .yT
ref(k +N)]T . The ma-

trices Γ, Υ, S and Ξ in (13) are provided in the appendix.
After performing some algebraic manipulations, (13) can be

written as

J = (U(k)−U unc(k))
TV (U(k)−U unc(k))+const(k) , (15)

where U unc ∈ R
n is the unconstrained solution to the op-

timization problem (12), with n = 3N . The positive definite
matrix V is given by

V = Υ
T ∼
Q Υ+ λuS

TS , (16)

where
∼
Q= diag(Q Q . . .Q).

Using the Cholesky decomposition V can be factored as

V −1 = H−1H−T . (17)

As a result, problem (12)—and after neglecting the constant
term in the objective function (15)—can be rewritten as the
ILS

minimize
U(k)

||Ū unc(k)−HU(k)||22 (18a)

subject to U(k) ∈ U (18b)
||Δuabc(�)||∞ ≤ 1 , ∀ � = k, . . . , k +N − 1 ,

(18c)

Algorithm 1 Sphere Decoder

function U∗ = MSPHDEC(U , d2, i, ρ2, Ū unc)
for each u ∈ U do

Ui ← u

d′2 ← ||Ūi −H(i,i:n)U i:n||22 + d2

if d′2 ≤ ρ2 then
if i < 3N then
MSPHDEC(U , d′2, i+ 1, ρ2, Ū unc)

else
if U meets (18c) then

U∗ ← U

ρ2 ← d′2

end if
end if

end if
end for

end function

where Ū unc ∈ R
n is

Ū unc(k) = HU unc(k) , (19)

and U ∈ Z
n, H ∈ R

n×n.
As shown in [15], problem (18) can be solved efficiently

by adopting the notion of sphere decoding. For reasons of
completeness, the sphere decoding algorithm proposed in
Section V-B in [15] is briefly summarized hereafter.
The sphere decoding algorithm is a depth-first search al-

gorithm that traverses the integer search tree in a recursive
manner. When reaching the lowest level of the tree, or when
pruning branches of the tree, the algorithm backtracks to
explore unvisited branches in previously visited levels. For
the specific problem (18), the nodes of the search tree are the
elements of the switching sequences U .
One can show that the optimal solution lies within an

n-dimensional sphere with radius ρ that is centered at the
unconstrained solution. Instead of exhaustively exploring all
nodes, the sphere decoder restricts its search to this sphere,
which includes only a small number of n-dimensional integer
points, see Fig. 3. As a result, the computational burden
is greatly reduced, since the total number of nodes, and
consequently the number of switching sequences U to be
explored, is in general several orders of magnitude lower
than the total number of nodes in the search tree that are
to be evaluated when an exhaustive search is performed, i.e.
when the set of admissible sequences is fully enumerated.
Note that by restricting the search to points within the sphere
the optimality of the solution is not affected. Specifically, the
sphere decoding algorithm obtains the same integer solution
as does exhaustive enumeration.
The pseudocode of the sphere decoder is given in Algo-

rithm 1. It should be noted that the initial values of the
arguments U , d2, i, and ρ are the empty set ∅, 0, 1, and
the initial radius of the sphere ρinit, respectively. The latter is
computed using (31) in [15].
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Fig. 4: Simulated waveforms produced by the direct model predictive controller (MPC) at steady-state operation, at full speed and rated torque. The prediction
horizon is set to N = 15 and the controller sampling interval is Ts = 125 μs. For the device switching frequency of fsw = 303Hz the low stator current
THD of Is,THD = 1.156% is achieved.

IV. PERFORMANCE EVALUATION
Simulation results are presented in this section that highlight

the benefits long prediction horizons entail when using direct
MPC for higher-order systems. The MV drive with an LC

filter as shown in Fig. 1 is used for this purpose. The NPC
inverter is fed by the constant dc-link voltage of Vdc = 5.2 kV
and a fixed neutral point potential. A 3.3 kV and 50Hz squirrel
cage induction machine rated at 2MVA with 356A rated
current is used. The machine’s total leakage inductance is
Lσ = 0.25 p.u.. The values of the LC filter are given by
L = 0.1174 p.u. and C = 2.9738 p.u.. The detailed parameters
of the machine, inverter and LC filter are summarized in
Table I. For the scenarios examined below, all results are
shown in the p.u. system.
The dominant resonance of this system is constituted by

the filter capacitance oscillating against the two inductances
in the drive system, namely the filter inductance and the total
leakage inductance of the machine. The resonance frequency
is given by

fres =
1

2π
√
C LLσ

L+Lσ

. (20)

For the given parameters, fres = 304Hz results.
The controller sampling interval Ts = 125μs is chosen to

facilitate long prediction intervals in time. Even though such
a relatively long sampling interval reduces the granularity of

switching, it is beneficial when operating at low switching
frequencies. The penalties in the objective function (11) are set
to Q = diag(1, 1, 5, 5, 150, 150) and R = λu I . The weight
λu is chosen such that the desired switching frequency is
achieved.

A. Operation at Steady-State
In a first step, the performance of the long-horizon direct

MPC scheme with reference tracking is investigated at steady-
state conditions, when operating at nominal speed and rated
torque. To ensure that the drive system has settled at steady-
state operation, the system is first simulated over several
fundamental periods without recording the results. The pre-
diction horizon of N = 15 is investigated and λu = 0.28 is
chosen, resulting in an average device switching frequency of
fsw = 303Hz, which is typical for medium-voltage applica-
tions. A very low stator current THD of Is,THD = 1.156% is
achieved.
The steady-state waveforms of the electromagnetic torque

and three-phase inverter currents over one fundamental period
are shown in Figs. 4(a) and 4(b), respectively. Throughout the
paper, the phase currents in a, b, and c are shown as blue, green
and red lines, respectively. Fig. 4(c) shows the three-phase
stator current waveforms along with their dash-dotted refer-
ences. The stator currents are effectively sinusoidal, despite
operation at a low switching frequency. Fig. 4(d) displays the
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TABLE I: Rated values (left) and parameters (right) of the drive system with
an LC filter.

Induction Voltage 3300V Rs 0.0108 p.u.
motor Current 356A Rr 0.0091 p.u.

Real power 1.587MW Lls 0.1493 p.u.
Apparent power 2.035MVA Llr 0.1104 p.u.
Frequency 50Hz Lm 2.3489 p.u.
Rotational speed 596 rpm

Inverter Vdc 1.930 p.u.
LC L 0.1174 p.u.
filter C 2.9738 p.u.

R1 3.737 · 10−4 p.u.
R2 3.737 · 10−4 p.u.

three-phase voltage across the filter capacitors, and Fig. 4(e)
depicts the three-phase switching sequence. For each phase of
the stator current, the spectrum was computed using a Fourier
transformation of the current waveform, which was recorded
over 15 fundamental periods. The spectrum of each phase is
shown separately in Fig. 4(f). To ensure a high resolution,
the drive system was simulated with a sampling interval of
25μs, despite the controller being executed and a new switch
position being applied only at intervals of 125μs.
In a second step, the influence of the prediction horizon

on the THD of the stator current is investigated for a given
switching frequency. Specifically, for different prediction hori-
zons, the penalty λu was tuned such that effectively the
same switching frequency of 300Hz resulted. The individual
simulations were approximated by a polynomial function of
fifth order, as shown in Fig. 5. When using a prediction horizon
of one step, a high stator current THD of 7.43% results,
making the direct MPC scheme unsuitable for an industrial
application. Increasing the prediction horizon slightly to three
steps, however, drastically reduces the THD to 2.17%. Further
increases in the prediction horizon lead to further decreases in
the THD. For the prediction horizon N = 20 for example,
a stator current THD of Is,THD = 1.01% is achieved when
operating at the switching frequency fsw = 303Hz.
This result is remarkable in that a very low stator current

THD can be achieved with a direct MPC scheme without the
addition of an outer damping loop. Note that the system has
effectively no passive damping; the filter inductor and capac-
itor have effectively zero resistance and the stator resistance
is with 0.01 p.u. very small. Moreover, it is remarkable that
the optimization problem with such a long prediction horizon
can be solved. Without the sphere decoder and when resorting
to full enumeration, about 1020 switching sequences would
have to be computed every 125μs, which is computationally
intractable3.
When operating at fsw = 200Hz, the stator current THD

drops slowly from its peak of Is,THD = 10.2% at the prediction
horizon N = 1 when increasing the horizon. With the horizon
N = 4, the THD is only halved to Is,THD = 5.03%. To half it
again, the prediction horizon needs to be extended to 15 steps,
resulting in Is,THD = 2.43%. We conclude that long prediction

3Note that the number of switching sequences is less than the theoretical
upper bound of 2720 thanks to the switching constraint (18c).

Length of prediction horizon N (number of steps)

I s
,T
H
D
(%
)

fsw ≈ 300Hz

fsw ≈ 250Hz

fsw ≈ 200Hz

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

Fig. 5: Stator current THD Is,THD as a function of the prediction horizon N
for three different switching frequencies fsw. The measurements are shown
as (blue) circles, (red) squares, and (green) rhombi, referring to individual
simulation results, when the drive was operated at switching frequencies of
300Hz, 250Hz and 200Hz, respectively. The data points were approximated
using fifth degree polynomials; the solid (blue) line refers to 300Hz, the
dashed (red) line to 250Hz, and the dash-dotted (green) line corresponds to
200Hz).

horizons tend to be of greater benefit when operating at low
device switching frequencies. This observation is in line with
the results in [9].
Note that the drive system can be successfully operated

at switching frequencies significantly below the resonance
frequency of the LC filter. For example, for the prediction
horizon N = 20 and the penalty λu = 9.6, the converter
operates at the switching frequency fsw = 138Hz, which is
significantly below the 304Hz of the LC filter resonance.
The resulting stator current THD is Is,THD = 4.99%. To
achieve this, the direct MPC scheme shapes the stator current
spectrum, based on information extracted from the internal
prediction model of the drive system, which captures the filter
resonance and the effect the switching actions have on it.
To successfully shape the current spectrum at low switching
frequencies, long prediction horizons are required.

B. Operation during Torque Reference Steps

In a last step, the performance of the proposed direct MPC
algorithm is examined during torque transients to highlight its
very fast dynamical behavior. For the examined scenario, a 15-
step prediction horizon is considered with the same weighting
matrix Q as before. Using again the penalty λu = 0.28 on the
switching transitions, the switching frequency fsw = 300Hz
results. While operating at rated speed, reference torque steps
of magnitude one are imposed. The response of the drive
system to these torque steps is shown in Fig. 6. The same
subfigures as in Fig. 4 are used, except for the current
spectrum, which is not shown, since it is of no relevance
during transients. The torque steps on the torque reference are
translated into the corresponding steady-state references yref
on the inverter current, capacitor voltage and stator current.
The latter are shown as dash-dotted lines in Fig. 6(c).
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(d) Three-phase capacitor voltage vc
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Fig. 6: Torque reference steps for direct MPC with the horizon N = 15 at nominal speed. The controller sampling interval is Ts = 125 μs and the switching
frequency is fsw = 300Hz.

As can be observed in Fig. 6(e), when the torque reference
is stepped down from rated torque to zero, the voltage applied
to the LC filter is instantly inverted, resulting in a short torque
settling time of 2.5ms. When the torque reference is stepped
up from zero to one, the transient lasts significantly longer and
the steady-state operating point is reached only within 10ms.
This is due to the small voltage margin available, which is
due to the machine operating at nominal speed. Nevertheless,
the stator currents are quickly regulated to their new reference
values, as can be seen in Fig. 6(c).
During the torque transients, significant energy is to be

moved between the inverter, filter and machine. The magnitude
and phase of the inverter current through the filter inductor
is changed, as is the phase of the capacitor voltage, and the
magnitude and phase of the machine’s stator windings.
The direct MPC scheme acts effectively like a deadbeat

controller. To move the third order system as quickly as
possible to its new references, three notches in the switching
sequence are created, which lead to three notches in the
inverter current. In turn, this leads to one distinctive notch
in the capacitor voltage. When voltage margin is available,
i.e. when stepping the torque from one p.u. to zero, these
notches can be easily identified in Fig. 6(e). When stepping the
torque up, very little voltage margin is available, limiting the
magnitude of the notches and the speed of the torque response.
Note the effect of the switching constraint (18c). Whenever

a direct switching from −1 to 1 and vice versa is required,
a mandatory intermediate zero switch position is applied for
the controller sampling interval. This slightly slows down
the transient performance of the controller. Nevertheless, the
controller exhibits significant overshoots during the negative
torque step, particularly in the inverter current. In a practical
setting, this might be undesirable, necessitating the addition of
a current limiting feature or the use of reference torque ramps
instead of steps.

V. CONCLUSIONS
For a medium-voltage drive system with an induction ma-

chine and LC filter, a direct model predictive control (MPC)
algorithm (without a modulator) was proposed with very
long prediction horizons. This control method treats the drive
system as a multiple-input multiple-output (MIMO) system
and manipulates the inverter switch positions such that the
inverter current, capacitor voltage and stator current track their
respective reference in the orthogonal reference frame. The
active damping of the filter resonance is achieved implicitly
by the controller, making an additional active damping loop
obsolete. When using long prediction horizons such as 20, low
stator current THDs in the range of 1 to 2% can be achieved
for device switching frequencies below the filter resonance
frequency of 300Hz.
When considering such long prediction horizons, enumer-

ation of all possible switching sequences becomes compu-
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tationally intractable. To overcome this and to solve the
underlying optimization problem in real time in a computa-
tionally efficient manner, a smart branch and bound technique
called sphere decoding is adopted [15]. Solving the integer
least-squares (ILS) problem in this way keeps the computa-
tional complexity at bay and allows one to fully exploit the
performance benefits that long prediction horizons provide.
Increasing the prediction horizon from one to 20, for example,
reduces the stator current THD sevenfold for the same device
switching.
We conclude that in contrast to common belief, long pre-

diction horizons do carry performance benefits for power
electronic systems, particularly when considering systems of
higher order or when operating them at low switching fre-
quencies. It is straightforward to apply the proposed controller
to any linear system with switched (integer) inputs, such as
grid-side converters with LCL filters, making this scheme a
promising alternative to the traditionally used field-oriented
control methods that are based on PI current controllers and
pulse width modulators.

VI. APPENDIX
The matrices D, E, and F of the continuous-time state-

space model of the drive system (9) are

D =

⎡
⎢⎢⎢⎣
−R1+R2

L
I − 1

L
I R2

L
I 0

1
C
I 0 − 1

C
I 0

Lr

Φ R2I
Lr

Φ I −( 1
τs

+ Lr

Φ R2)I p1

0 0
Lm

τr
I p2

⎤
⎥⎥⎥⎦ ,

E =
Vdc

2

⎡
⎢⎢⎢⎣

1
L
I

0

0

0

⎤
⎥⎥⎥⎦K, F =

⎡
⎢⎣I 0 0 0

0 I 0 0

0 0 I 0

⎤
⎥⎦ ,

where 0 is the zero matrix and I the identity matrix of
appropriate dimensions. Moreover

p1 =

(
1

τr
I − ωr

[
0 −1

1 0

])
Lm

Φ
,

p2 =
1

τr
I + ωr

[
0 −1

1 0

]
.

The matrices Υ, Γ, S, and Ξ in (13) are

Υ =

⎡
⎢⎢⎢⎢⎣

CBK 0 · · · 0

CABK CBK · · · 0

...
...

...
CAN−1BK CAN−2BK · · · CBK

⎤
⎥⎥⎥⎥⎦ ,

Γ =

⎡
⎢⎢⎢⎢⎣

CA

CA2

...
CAN

⎤
⎥⎥⎥⎥⎦ , S =

⎡
⎢⎢⎢⎢⎢⎢⎣

I 0 · · · 0

−I I · · · 0

0 −I · · · 0

...
...

...
0 0 · · · I

⎤
⎥⎥⎥⎥⎥⎥⎦
, Ξ =

⎡
⎢⎢⎢⎢⎢⎢⎣

I

0

0

...
0

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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