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ABSTRACT

The discharge through the facilities of a river power plant
is adjusted to control the water level at a pre-specified
point. The common control method often yields large
unnatural discharge variations resulting in unsatisfactory
control performance. In cascades of river power plants,
these discharge variations are unpredictably amplified af-
fecting adversely nature and imposing problems on navi-
gation.

As a solution to this problem, this paper presents a
supervisory controller for cascaded river power plants,
which is based on Model Predictive Control. The required
linear discrete time model of the power plant cascade is
derived from the Saint Venant equations. The objective
of the controller is to keep the pre-specified water levels
within given bounds and to dampen the discharge varia-
tions. This is expressed in a quadratic cost function subject
to constraints. A Kalman filter is used to estimate the cur-
rent values of the state variables from the available water
level measurements.

The main advantages of the proposed control scheme
are a coordination of the control actions for the whole
cascade taking interactions between the power plants into
account, preemptive control for anticipated disturbances,
explicit constraint handling, and straightforward tuning.
The proposed concept is compared with the currently em-
ployed PI-type controllers via simulations, demonstrating
the achieved enhancements. In particular, the damping
of disturbances is significantly improved while the water
level constraints are met.

Keywords - Model Predictive Control, Constrained
Optimal Control, Cascaded River Power Plants, Saint
Venant Equations, River Modelling

I INTRODUCTION

River power plants are man-made constructions, which are
built into the course of a river to generate electrical en-
ergy. These facilities have a major impact on the water
level and the flow of the river as they retain water and vary
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Figure 1: Structures of a basic power plant (left) and a
channel power plant (right)

the discharge through their facilities, often inducing un-
natural water level and discharge variations. To limit the
adverse impact on nature as much as possible, the author-
ities impose conditions on the operation of power plants.
These conditions usually imply keeping the so-called con-
cession level, the water level at a specific point upstream
of the river power plant, within certain bounds.

The regulation of the concession level constitutes a con-
trol problem with a controller manipulating the discharges
through the turbines and the weirs of the power plant. Typ-
ically, either the weir or the turbine discharge is kept at a
constant value while the discharge through the other facil-
ity is adjusted for water level control.

Therefore, from the control point of view, the main
power plant components are the turbines, which generate
the electrical energy, and the weirs, which drain additional
water not flowing through the turbines. In Fig. 1 the struc-
tures of a basic river power plant (left) and a channel power
plant (right) are given. For a basic river power plant, the
turbines and the weirs are located at the same position in
the natural river course. For a channel power plant, the
turbines are located in a man-made channel in parallel to
the natural river course. The concession level positions
are also shown, which are usually some tens of meters up-
stream of the weirs.

The commonly employed control concept consists of
a Proportional-Integral (PI) controller with an additional
feed-forward term at each power plant (Fig. 2). The differ-
ence between the measured value of the concession level
hc and the reference value href acts as input to the PI part
of the controller. The additional feed-forward term ac-
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Figure 2: PI controller with an additional feed-forward
term

counts for anticipated disturbances by measuring the dis-
charge qin further upstream and applying it with an appro-
priate delay.

As such controllers are local and no coordination exists
between the power plants in a cascade, the consequences
of the control actions to downstream power plants are not
considered. Often, significant variations are imposed on
the discharges in order to keep the concession levels con-
stant. For cascades of power plants, these fluctuations in
discharge may be amplified unpredictably above the natu-
ral discharge variations in a river. Figure 3 shows an exam-
ple measured1 at the river Aare in Switzerland. The con-
sidered cascade of six power plants and 50km total length
ranges from the town of Murgenthal to the city of Brugg.
The inflow to the cascade in Murgenthal shows only small
variations, which in the outflow in Brugg are amplified by
approximately a factor of five, where large oscillations in
both water level and discharge are observed (note the dif-
ferent scales in the two graphs).

These discharge amplifications and the deviations of
the concession levels mentioned above are undesirable be-
cause they affect nature and may impose problems on nav-
igation. Therefore, besides keeping the concession lev-
els close to their references, the damping of the discharge
variations must be considered as an additional objective
in the controller design. Since discharge variations are
required to control the concession levels, a trade-off be-
tween these contradictory control objectives is necessary.
With the currently employed controllers this cannot be in-
tegrated concisely. The tuning is complicated by the fact
that the correct time delay of the feed-forward term is un-
certain and the best parameter set of both the PI controller
and the feed-forward term depends on the operating point.
Additionally, there is no guarantee that the constraints on
the concession level are met because they are only implic-
itly considered by more or less aggressive tuning of the
control parameters.

The problem of oscillating discharges in the context of
water level control was already discussed in [Neumüller &

1Measurements provided by the Federal Office for Water and Geol-
ogy, Switzerland, http://www.bwg.admin.ch
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Figure 3: Incoming variations in Murgenthal and amplified
variations in Brugg several kilometers downstream

Bernhauer 1969] and [Neumüller & Bernhauer 1976]. Fur-
thermore, there have been several approaches to the con-
trol of cascaded river reaches in the context of irrigation.
This is a closely related problem also dealing with open
water hydraulics and using water levels and discharges as
controlled and manipulated variables. Nevertheless, the
control objectives for irrigation are different and mainly
aim at a sufficient supply of all drains without wasting wa-
ter. A review of control and modelling techniques for irri-
gation systems can be found in [Malaterre & Baume 1998]
and shows the variety of proposed approaches. The mostly
used approaches apply monovariable PI-type controllers
similar to the basic scheme explained above.

An extensive analysis on PI-controllers with and with-
out additional feed-forward term applied to power plant
control is given in [Kühne 1975]. It is shown that the pa-
rameters for the PI and the feed-forward part have to be
matched carefully in order to achieve a discharge damping
and still keep the concession level close to its reference.
This tuning is very demanding and even with well matched
parameters the damping is only marginal. Similar results
are obtained in [Theobald 1999]. There, a simulation pro-
gram for automated control of cascaded barrages is de-
veloped. For that purpose, different control methods have
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been analyzed and implemented. Basically, PI-controllers
with feed-forward terms are applied in all of these meth-
ods. Supervisory control is not considered.

Multivariable control algorithms including optimal con-
trol have been developed in some works [Malaterre &
Rodellar 1997], [Malaterre 1998]. However, none of these
algorithms deals with constraints, for example the men-
tioned bounds on water level deviations, and thus they fail
to successfully address the considered control problem.

An important component in controller design is the
underlying model of the river hydraulics. Also in this
field a number of different approaches have been pro-
posed. In most works transfer functions are used to
describe the river hydraulics. The approaches range
from simple models where rivers are modelled as tanks
with delayed inflow [Schuurmans, Bosgra & Brouwer
1995], [Schuurmans, Clemmens, Dijkstra, Hof & Brouwer
1999], [Papageorgiou & Messmer 1989] to sophisticated
transfer functions derived from the diffusive wave equa-
tion [Litrico & Fromion 2001], [Litrico & Georges 1999].
The advantage of the simpler approaches is a small num-
ber of parameters, but this limits on the other hand the
modelling capabilities and prevents the modelling of com-
plex effects like damping and reflection of propagating
waves. More complex transfer functions with enhanced
modelling capabilities usually use a large number of pa-
rameters, which lack a direct physical correspondence and
are therefore difficult to identify. Hence, extensive experi-
ments in the real cascade are needed for identification.

The contributions of this paper are twofold. One con-
tribution is to derive a generic state space model of an en-
tire cascade of river power plants following the approach
in [Chapuis 1998], which is based on the Saint Venant
equations. This model accurately captures the river dy-
namics and the hydraulic coupling between river reaches,
while the parameters can be analytically determined from
geometric data of the river and from steady state measure-
ments.

A further contribution is the development of a su-
pervisory controller based on Model Predictive Control
(MPC) [Maciejowski 2002]. MPC is a control concept,
which in process control has become the industrial stan-
dard two decades ago. It uses a model of the process to
predict the future trajectories of the controlled variables
over a horizon in order to determine the optimal sequence
of manipulated variables. This is done while explicitly
taking constraints on inputs, states and outputs into ac-
count. Furthermore, the tuning of the control parame-
ters is straightforward even in the presence of contradic-
tory control objectives. In this paper, MPC is specifi-
cally applied to the described control problem. It uses the
derived model to predict the future evolution of the wa-

ter levels and discharges and to determine the discharges
through the power plants such that the discharge variations
are dampened and the water level constraints are met. To
make the proposed control concept applicable to practi-
cal power plant arrangements without installing additional
costly measurement equipment, the estimation of unmea-
surable system states is performed with a standard state
estimation scheme. A controller results taking information
about all power plants in the cascade into account, coordi-
nating the discharges through the power plants and explic-
itly considering all constraints. To our best knowledge this
approach is new to the control of power plant cascades.

Sect. II illustrates the basic Model Predictive Control
concept and Sect. III discusses the general modelling
of river hydraulics. Based on this, Sect. IV introduces
a generic model of cascades of river power plants and
Sect. V discusses the state estimation problem. Section VI
shows how MPC can be applied to a power plant cascade.
In Sect. VII, simulation results for the developed controller
are shown and compared with the current controller lead-
ing to the conclusions given in Sect. VIII.

II MODEL PREDICTIVE CONTROL

In the following, we briefly introduce the notion of Model
Predictive Control (MPC) for discrete-time linear systems
and summarize its basic features. In MPC, the current con-
trol input is obtained by solving at each sampling instant an
open-loop constrained optimal control problem, using the
predictions provided by an internal model of the controlled
process. The optimal control problem is formulated over a
finite or infinite horizon using the current state of the plant
as the initial state. The underlying optimization procedure
yields an optimal control sequence that minimizes a given
objective function. A receding horizon policy is employed,
which refers to only applying the first control input of this
sequence, and to recomputing the control sequence at the
next sampling instant over a shifted horizon, thus provid-
ing feedback and closing the control loop. The significant
advantages of MPC, including its ability to systematically
cope with hard constraints on manipulated variables, states
and outputs, and to easily address systems with multiple
inputs and outputs, have led to its success and widespread
use, which initiated in the process industry more than two
decades ago. For details, the reader is referred to [Mayne,
Rawlings, Rao & Scokaert 2000] and [Maciejowski 2002].

Consider as model of the controlled process the linear
discrete-time system

x(k + 1) = Ax(k) +Bu(k), (1)

y(k) = Cx(k), (2)

where x(k) ∈ R
n is the state vector, u(k) ∈ R

m the input
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vector, y(k) ∈ R
p the output vector and k ∈ N the discrete

time instant. A, B and C are the system, the input and
the output matrices respectively, which are of appropriate
dimensions. The constraints on the states x(k) and on the
inputs u(k) are defined as

x(k) ≤ x(k) ≤ x(k), (3)

u(k) ≤ u(k) ≤ u(k) (4)

with lower limits x(k), u(k) and upper limits x(k), u(k).
Next, we define the quadratic cost function

J(x(0), UN ) ,

N−1
∑

k=0

(

xT (k)Qx(k) + uT (k)Ru(k)
)

+ xT (N)Qtx(N)

(5)

as a function of the initial state x(0) and the sequence of
control inputs UN = [uT (0), . . . , uT (N − 1)]T over the
horizon N . The matrices Q º 0 and R Â 0 penalize
the deviations of the states and inputs from the origin, and
Qt is referred to as the terminal weight, on which we will
elaborate at the end of this section.

The optimal control problem is stated as

min
UN

JN (x(0), UN ) (6)

subject to the evolution of the model (1) and (2)
with the constraints (3) and (4) for the time steps
k = 0, . . . , N − 1. The optimal control problem (6) is
cast as a Quadratic Program (QP), for which very efficient
solvers exist. The result is the optimal sequence of control
inputs, of which only the first element is implemented.

The above state control problem with finite N andQt =
Q is referred to as the constrained finite time optimal con-
trol problem. In general, performance is improved by in-
creasing N , but this also increases the complexity of the
underlying QP. Yet, it would be desirable to obtain the so-
lution to the constrained infinite time optimal control prob-
lem. As briefly summarized in the following, the terminal
weight Qt, a terminal set constraint x(N) ∈ Xci and a
finite N can be used to emulate the infinite horizon.

Assume that at time step N the state x(N) lies in a
set Xci with the following property. When neglecting
the constraints (3) and (4) in the optimal control problem
and applying the resulting (unconstrained) control input
to the plant, the constraints are met and the state remains
in the set for all future time steps, namely x(k) ∈ Xci

for all k ≥ N . Such a set is referred to as control in-
variant set, and the unconstrained optimal control scheme
with N = ∞ is the so called Linear Quadratic Regula-
tor (LQR). The cost from k = N to infinity for the LQR
controller is given by xT (N)Qtx(N), with Qt being the
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Figure 4: Model parameters for one river cross section

solution to the Discrete Algebraic Riccati equation (ARE)

Qt = ATQtA+Q−ATQtB(B
TQtB +R)

−1BTQtA .
(7)

To ensure x(N) ∈ Xci for a finite N , one may either im-
pose x(N) ∈ Xci as a constraint, the so called terminal
set constraint, or (heuristically) choose N such that it is
guaranteed that x(N) ∈ Xci holds for all possible x(0).

III MODELLING OF A RIVER REACH

In order to apply MPC to water level control, a model of
the cascaded river power plants is required. First, a model
of the river hydraulics in a single river reach is derived
from the Saint Venant equations following the approach
in [Chapuis 1998], which is then used in Sect. IV to build
a model of the entire cascade.

By applying the conservation of volume and the con-
servation of momentum laws to a river slice, Jean-Claude
Saint Venant obtained the partial differential equations

0 =
∂Q

∂z
+

∂S

∂t
, (8)

0 =
1

g

∂

∂t

(

Q

S

)

+
1

2g

∂

∂z

(

Q2

S2

)

+
∂H

∂z
+ If − I0 (9)

which describe the one-dimensional evolution of the water
levels and the discharges along a river. Figure 4 illustrates
the parameters of these equations in a river cross section.
H(z, t) is the water height measured from the river bed,
S(z, t) the wetted cross-sectional area, W (z, t) the river
top width and Q(z, t) the discharge at position z at time t.
The parameter If (z, t) is the friction slope accumulating
the influence of friction as described in [Chapuis 1998],
I0(z) is the river slope and g is the gravitational constant.

To obtain a linear, discrete time model, the partial dif-
ferential equations (8) and (9) are linearized and dis-
cretized in time and space as elaborated in [Chapuis 1998].
First, the river is approximated by an equivalent rectan-
gular channel. Since the Saint Venant equations are one-
dimensional, the exact cross-section geometry is not im-
portant as long as the hydraulic properties remain un-
changed. A Taylor approximation around the operating
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Figure 5: Division of the river into compartments

point Q0(z), H0(z) then leads to a system of linear par-
tial differential equations with the deviations of the water
level and of the discharge from their operating point as
variables.

For the space discretization the river reach of length L is
equally divided into n compartments of length dL = L/n
(Fig. 5). The variables qi and hi denote the normalized
deviations of the water levels and the discharges from the
operating point values. The calculation points for these
water levels and discharges are shifted by half a compart-
ment length and are placed alternately along the river. The
inflow qin and the outflow qout are located at the same po-
sitions as h1 and h2n+1, respectively. Using these calcu-
lation points, the partial differential equations are approxi-
mated by difference equations with respect to space yield-
ing a linear, discrete space system now consisting of sim-
ple differential equations.

To additionally discretize the system in time, zero-order
hold time discretization is applied yielding the linear, dis-
crete time state space model

ξ(k + 1) = Θξ(k) + Ψu(k), (10)

γ(k) = Υξ(k) (11)

with

ξ(k)=



















h1(k)
q2(k)
h3(k)

...
q2n(k)

h2n+1(k)



















, u(k)=

[

qin(k)
qout(k)

]

, γ(k)=
[

hc(k)
]

,

(12)

where ξ(k) denotes the state vector, u(k) is the input vec-
tor and γ(k) is the output vector. The elements in the ma-
trices Θ, Ψ and Υ are calculated from geometrical data of
the river and steady state measurements. Thus, no identi-
fication experiments are necessary. The dimensions of the
vectors in (12) and the matricesΘ,Ψ andΥ depend on the
number of discrete sampling points along the considered
river reach.
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Figure 6: Generic river reaches of which a cascade is com-
posed

IV CASCADE MODELLING

The system to be modelled is a river of generic geome-
try containing a cascade of river power plants. The power
plants separate different reaches of the river such that the
only connection between two successive river reaches are
the discharges through the power plant facilities in be-
tween. As these discharges are independent of the hy-
draulic state of the reaches, the river reaches are self-
contained systems. Therefore, the derived models of these
single river reaches can be combined to a model of an en-
tire cascade. The generic river reaches that are required to
compose any combination of power plants with or without
man-made channels are given in Fig. 6.

The application of the Saint Venant model described in
the previous section to such a river reach is straightfor-
ward. For each river reach j the system

ξj(k + 1) = Θjξj(k) + Ψjuj(k), (13)

γj(k) = Υjξj(k) (14)

results, where ξj(k), uj(k) and γj(k) correspond to the
vectors given in (12).

One of the control objectives is to dampen the discharge
variations in the river. This is achieved by minimizing the
changes in discharge through the power plants. Thus, the
model of each river reach is slightly adapted such that the
total discharges through the power plants are included in
the state vector and the changes of these discharges are
used as inputs instead

[

ξj(k+1)
uj(k)

]

=

[

Θj Ψj

0 I

][

ξj(k)
uj(k−1)

]

+

[

Ψj

I

]

δuj(k), (15)

γj(k)=
[

Υj 0
]

[

ξj(k)
uj(k−1)

]

. (16)

Like this a penalty can be applied to these changes in the
cost function in order to keep them small.
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From these river reach models, the model of the entire
cascade is built

x(k + 1) = Ax(k) +Bδu(k), (17)

y(k) = Cx(k), (18)

where the state, the input and the output vectors for a cas-
cade of m power plants are

x(k)=























ξ1(k)
u1(k−1)
ξ2(k)

u2(k−1)
...

ξm(k)
um(k−1)























, δu(k)=











δu1(k)
δu2(k)

...
δum(k)











, y(k)=











γ1(k)
γ2(k)

...
γm(k)











.

(19)
The state space matrices A, B and C are built accordingly
from the system matrices of the single river reaches Θj ,
Ψj and Υj .

V STATE ESTIMATION

As shown in Sect. II, the variables in the state vector have
to be updated from measurements after each control step.
The elements in the state vector correspond to the water
levels and the discharges at the sampling points along the
river. Since not all of these values are measurable, they
have to be estimated from the available measurements of
the concession levels and the headwater levels of the power
plants.

The Kalman filter [Kalman 1960] addresses the general
problem of estimating the state vector of a discrete time
controlled process governed by the linear stochastic differ-
ence equation

x(k + 1) = Ax(k) +Bδu(k) + ν(k) (20)

with the measurement given by

y(k) = Cx(k) + µ(k) . (21)

The random variables ν(k) and µ(k) represent the pro-
cess and the measurement noise, respectively. They are
assumed to be independent of each other with white and
normal (Gaussian) probability distributions. The Kalman
filter provides an estimate of the state x̂(k), such that the
error covariance matrix

P (k) = E{(x(k)− x̂(k))(x(k)− x̂(k))T } . (22)

is minimized. Often, the measurement noise can be ob-
tained experimentally. The covariances of the noises can
be used to reflect the dominant source of uncertainty.

Specifically, they express the trade off between the cred-
ibility of the obtained measurements with respect to the
predictions resulting from the stochastic model dynam-
ics (20). A further elaboration on the concept of the
Kalman filter is beyond the scope of this paper and the
reader is referred to one of the numerous control theory
textbooks.

The estimation of the non-measurable variables allows
for a controller implementation which only uses available
measurements such as the discharges through weirs and
turbines, and the water levels on their upstream side. No
installation of additional costly measurement equipment is
necessary.

VI MPC FOR CASCADE CONTROL

Using the derived model of a power plant cascade, a con-
strained optimal control problem as described in Sect. II
can be formulated for the control of a cascade. Such a
supervisory control scheme allows for a coordinated opti-
mization of the control inputs of all power plants.

The control objectives are to keep the concession lev-
els as close to the reference as possible and to dampen the
variations in discharge through the power plants facilities.
As these demands are contradictory, a trade-off between
both criteria is necessary. Moreover, the authorities im-
pose limits within which the concession levels may vary.
These limits may be violated only for a short time or under
extraordinary circumstances like floods or heavy rainfalls
and are therefore defined as soft constraints. Concerning
the turbines and weirs, physical limitations on the mini-
mal and maximal discharge and on their maximal rate of
change exist. These represent hard constraints, which can-
not be violated.

For the modelling of these constraints the concession
levels

xc(k) = Gcx(k) =
[

hc1(k) . . . hcm(k)
]T

(23)

and the manipulated discharges

xu(k) = Gux(k) =
[

u1(k) . . . um(k)
]T

(24)

are considered. Since they are contained in the state vec-
tor x(k), the constraints on these variables are state con-
straints. The constraints on the concession levels xc(k)
are modelled as soft constraints with slack variables εc(k)
and are formulated as

xc(k)− εc(k) ≤ xc(k) ≤ xc(k) + εc(k), (25)

0 ≤ εc(k). (26)

The hard constraints on the manipulated discharges xu(k)
and the changes in the manipulated discharges δu(k) are
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given by

xu(k) ≤ xu(k) ≤ xu(k), (27)

δu(k) ≤ δu(k) ≤ δu(k). (28)

The constrained optimal control problem amounts to

min
δU

N−1
∑

k=0

(

xT (k)Qx(k) + δuT (k)Rδu(k)+

+εTc (k)Qεεc(k)
)

+ xT (N)Qtx(N) (29)

subject to the model (17), (18) and the constraints
(25)-(28).

The penalty matrixQ has non-zero elements only on the
diagonal in the positions corresponding to the deviations
of the concession levels. The matrices R and Qε are both
diagonal and of dimension equal to the number of power
plants in the cascade. The minimization of the first term
accounts for keeping the deviations of the concession lev-
els from their reference values small. At the same time, the
changes in the power plant discharges are penalized in the
second term in order to dampen the discharge variations.
The tuning of the controller is reduced to assigning val-
ues to Q, R and Qε expressing the relative importance of
the contradictory control objectives. Finally,Qt solves the
Discrete Algebraic Riccati equation and N is chosen large
enough to ensure that (29) resembles the infinite horizon
control problem.

Since the resulting cost function is quadratic, the opti-
mal control sequence can be determined from (29) by solv-
ing a standard Quadratic Program (QP). Various efficient
software packages for this purpose are available.

VII SIMULATION RESULTS

For performance evaluation, the developed control concept
is applied as an example to a cascade in the river Aare.
The topology of the river is shown in Fig. 7. The river
hydraulics are simulated with the state-of-the-art simula-
tion software FLORIS2 based on detailed river data. This
data consists of 1684 cross section profiles and steady state
measurements of water levels and discharges at the respec-
tive sampling points.

The MPC tuning parameters are shown in Table 1. As
opposed to the very detailed river model in FLORIS, which
serves as the controlled process, the river reach models
used for the MPC scheme require a significantly lower
amount of river data. A model with a total number of 209
states and the five turbine discharges as inputs is used in

2Scietec, developer and distributor of the river simulation software
FLORIS, http://www.scietec.com
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Figure 7: Power plant cascade at the river Aare

this simulation. The number of model states can be fur-
ther reduced to 150 using a standard model reduction tech-
nique [Moore 1981]. A standard Kalman filter is used to
estimate the states of the model from the available mea-
surements. The sampling interval is 72s and the MPC hori-
zon is set to 50 time steps (=1h). This approximately cor-
responds to the propagation delay from the upstream to the
downstream end of the cascade. The computation time to
solve the QP in each step on a standard PC is roughly 8.6s,
which is very short compared to the available length of the
sampling interval.

Parameters Values
number of states 35/35/41/45/53
sampling interval 72s
N 50 time steps
x

c
, xc ±2cm for all plants

R diag([0.01 0.01 0.01 0.1 1])
Q diag([0.002 ... 0.002])
Qε diag([10 ... 10])

Table 1: MPC tuning parameters for the five considered
power plants

The control parameters are tuned with focus on dis-
charge damping of the cascade as a whole, which corre-
sponds to the damping of the discharge at the last power
plant. Therefore, the largest weight of 1 is assigned to
changes in the discharge of the last power plant (P5). As
the discharge changes at the other power plants are of mi-
nor interest, the respective penalty for the fourth power
plant is ten times lower (0.1) and the changes in the dis-
charge of the first three power plants are penalized with
even smaller weights (0.01). To fully utilize the avail-
able storage volume for disturbance damping, the weight
on the concession level deviations is very small (0.002),
which merely ensures that the concession level is eventu-
ally driven back to zero and does not remain at the limits in
steady state. The slack variables are heavily penalized with
10 in order to not violate the imposed concession level
bounds during regular operation. Note that none of these
parameters depends on the operating point or the expected
disturbances, thus leading to a straightforward tuning.

The currently employed PI-type controllers are applied
for comparison. Their parameters are tuned by our indus-
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Figure 8: Inflow disturbance to the cascade

trial partner3 using their commonly employed procedure
based on inflow and outflow experiments at the different
stages of the cascade.

To point out the advantages of MPC over local PI con-
trollers, one example simulation is dicussed here in detail.
For this simulation, the inflow to the cascade is chosen
to vary around a steady state discharge of 200m3/s. The
applied disturbance is approximately sinusoidally shaped
with an amplitude of 30m3/s (Fig. 8). Such discharge
variations appear frequently in the considered power plant
cascade.

Around the operating point of 200m3/s, the hydraulic
situation is very sensitive to incoming disturbances and
difficult to be handled by the current controllers. The tur-
bines of all power plants are not fully utilized and are thus
in charge of the concession level control. The weir dis-
charges are held constant during the entire simulation.

Figure 9 shows the resulting deviations of the conces-
sion levels and the turbine discharges from the operating
point at the five power plants (P1-P5) for the incoming dis-
turbance shown in Fig. 8. The results for the local PI con-
trollers are shown as dash-dotted lines, the results for the
supervisory MPC controller as solid lines. The horizon-
tal lines in the left figures indicate the maximum allowed
concession level deviations of ±2cm.

For the PI-type controllers, the power plants in the cas-
cade are not coordinated. Thus, each power plant can
only react on disturbances that have already reached the
measuring point of its feed-forward term. This drasti-
cally limits the possiblities for anticipating control. The
main control objective of keeping the concession level
constant or bringing it quickly back to its reference value
in case of deviations is achieved at the expense of poor
discharge damping, or even discharge amplification. As a
consequence, the discharge variations are amplified as they
propagate through the cascade. To achieve a damping of
the discharge variations, the PI controllers would have to
be tuned less aggressively (e.g. for plant P3). Such a tun-
ing might yield concession levels varying exactly within
the prescribed limits. Yet, this would only hold for the
specific disturbance and for the specific operating point.

3Rittmeyer AG, Zug, http://www.rittmeyer.ch
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Figure 9: Concession levels and turbine discharges of
plants P1-P5 for PI controllers (dash-dotted) and MPC
controller (solid)

When varying the disturbance or the operating point, this
tuning would be inappropriate, leading to either constraint
violations or unsatisfactory discharge damping.

As opposed to the PI-type controllers, MPC coordinates
its control actions for all power plants. Already at time
instant t = 1h, the beginning of the disturbance, the dis-
charges through the turbines at all power plants are in-
creased. The consequence is that the concession levels are
lowered for later compensation of the propagating distur-
bance. Especially at the power plants P3-P5, this is clearly
visible in Fig. 9. The anticipating and coordinating feature
of the controller allows for damping the discharges from
one power plant to the next one, such that at the fifth power
plant P5 the initial discharge variations of±30m3/s are re-
duced to about ±5m3/s. Because of the comparably small
storage volume in the second river reach (between P1 and
P2), the second power plant P2 achieves only a marginal
damping. Nevertheless, it keeps its concession level within
the specified bounds, which are severely violated when us-
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ing the PI controller. Since MPC explicitly takes the level
constraints into account, it fully utilizes the allowed de-
viations of the concession levels in order to achieve the
maximum possible discharge damping. Overall, the con-
trol performance is enhanced significantly compared to the
PI-type controllers.

VIII CONCLUSIONS

This paper presented a supervisory controller for water
level control of cascaded river power plants. A Model
Predictive Control (MPC) scheme was proposed solving
a constrained optimal control problem, which was formu-
lated based on a river model derived from the Saint Venant
equations.

Closed-loop simulations with a numerically simulated
river as controlled process showed that the supervisory
MPC controller significantly improves the damping of dis-
charge variations compared to the current control scheme.
The anticipating control actions are coordinated for the en-
tire cascade and the interactions between the power plants
are taken into consideration. Moreover, the contradictory
control objectives and all constraints are taken into ac-
count, which is not possible with the currently employed
PI controllers that were designed to control water levels
without considering discharge damping. The tuning of the
proposed controller is straightforward and can easily be
adapted to special hydraulic situations or emergency cases.
This results in a robust and reliable water level control con-
cept for cascades of river power plants.

Since the proposed hydraulics model is generic and al-
lows for the integration of additional in- and outflows, it
is applicable to various practical situations including cas-
cades of storage power plants and irrigation systems. The
flexibility in formulating the control problem allows for
integrating additional objectives and constraints such as
economical criteria. Financial objectives considering the
amount of produced power at a certain time are particu-
larly interesting in cases where the operational and envi-
ronmental constraints are less restrictive.

A practical implementation of the proposed concept is
feasible using standard computer hardware and process
control systems as already installed at most power plants.
In the considered cascade, all power plants are equipped
by the same company and communication lines for a su-
pervisory controller are already available, which makes the
solution particularly interesting.
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