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Abstract

In this paper, we propose a novel approach to the modelling and controller design of the synchronous step-

down dc-dc converter. We introduce a hybrid converter model that is valid for the whole operating regime and

captures the different modes of operation. Based on this model, we formulate and solve a constrained optimal

control problem. This allows a systematic controller design that achieves the regulation of the output voltage to

its reference despite input voltage and output load variations while satisfying the constraints on the duty cycle

and the inductor current. The resulting state-feedback control law is of piecewise affine form, which can be easily

stored and implemented in a look-up table. A Kalman filter is added to accountfor unmeasured load variations

and to achieve zero steady-state output voltage error. Experimental results demonstrate the potential advantages

of the proposed control methodology.

I. I NTRODUCTION

Nowadays, switch-mode dc-dc conversion is a mature and well-established technology used in a large variety

of demanding applications. Yet, the control problems associated with such converters still pose theoretical and

practical challenges, which manifest themselves in the numerous publications on this subject over the last

years. The development of advanced control techniques together with the increased computational power of

the available hardware in the control loop allow tackling the control problem from a new perspective. In this

paper, we propose a new approach to the problem – namely, we pose and solve the constrained optimal control

problem for fixed-frequency switch-mode dc-dc converters.

The difficulties in controlling dc-dc converters arise fromtheir hybrid nature. In general, these converters

feature three different modes of operation, where each modehas an associated linear continuous-time dynamic.

Furthermore, constraints are present, which result from the converter topology. In particular, the manipulated

variable (the duty cycle) is bounded between zero and one, and in the discontinuous current operation a state
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Sannio, Benevento, Italy,frasca@unisannio.it; M. Morari is with the Automatic Control Laboratory, ETH Zurich, Switzerland,

morari@control.ee.ethz.ch.

Correspondence to: Tobias Geyer, GE Global Research Europe, Freisinger Landstr. 50, 85748 Garching b. Munich, Germany,tel +49

89 5528 3435, fax +49 89 5528 3180,tobias.geyer@research.ge.com

Part of this work has been previously presented in the 2004 IEEE Workshop on Computers in Power Electronics (COMPEL), Champaign,

IL, USA, August 2004.



1

(inductor current) is constrained to be nonnegative. Additional constraints may be imposed as safety measures,

such as current limiting or soft-starting, where the latterconstitutes a constraint on the maximal derivative of

the current during start-up. The control problem is furthercomplicated by gross changes in the operating point

that occur due to input voltage and output load variations.

The dominant approach to the modelling and controller design of switch-mode dc-dc converters is the method

of state-space averaging [1], [2] and the design of a controlloop comprising a PI-type controller and a Pulse

Width Modulation (PWM) unit. The controller is tuned for a model locally linearized around a specific operating

point. In the literature a wide range of strategies have beenproposed for improving the controller design, but

the majority of the proposed design methods is still based onaveraged and/or locally linearized models of the

converters. In this category, the methods introduced vary from Fuzzy Logic [3] to Linear Quadratic Regulators

(LQR) [4], and from non-linear control techniques [5], [6],[7] to feedforward control [8], [9].

Due to space limitations, we provide here only a brief overview of the literature most related to our approach

– a more extensive coverage can be found in Section 8.1.2 of [10]. In [11], [12], the authors propose an

(unconstrained) LQR controller based on a locally linearized discrete-time model of the averaged dc-dc converter.

In [13], an unconstrained nonlinear predictive controlleris formulated for a dc-dc converter using a control

methodology that extends the concept of Generalized Predictive Control [14] to nonlinear systems. For the

latter, an implementation may prove to be difficult due to thelack of convergence guarantees and the potentially

excessive computation time. As an unconstrained optimization problem is solved, the constraints on the duty

cycle and the inductor current cannot be handled in a straightforward manner.

More recently, the research effort has also focused on digital control techniques, enabled by the rapid evolution

of the available control hardware. As examples, the reader is referred to [15] and [16] for digital control

techniques applied to dc-dc converters, and to [17] and [18]for a presentation of the related frequency domain

modelling and an analysis of the issues stemming from the digital quantization effects, respectively. Furthermore,

predictive digital control techniques have also been reported for the case of power factor correction, see e.g. [19]

for details.

Motivated by the aforementioned difficulties, we present a novel approach to the modelling and controller

design problem for fixed-frequency dc-dc converters, usinga synchronous step-down converter as an illustrative

example. The converter is modelled as a hybrid system by deriving a piecewise affine (PWA) model that is

valid for the whole operating range and captures the evolution of the state variables within the switching period.

Based on the hybrid model, we formulate a constrained finite time optimal control problem, which is solved

off-line using Dynamic Programming [20]. This approach leads to a state-feedback controller that is defined

over the whole state-space and yields the duty cycle as a PWA function of the states. This controller can be

considered as an extension of the LQR methodology (which is applicable to linear models only) to nonlinear

(PWA) models. However, the most important feature is that such a controller can be implemented as a look-up

table, thus avoiding the need for any on-line optimization.We would like to emphasize that the controller is

designed such that for the control computation (which is effectively a look-up table evaluation) only directly

available quantities are needed. In particular, we assume that – in accordance with common practice – the input

voltage, the inductor current and the output voltage can be directly measured. In accordance with the digital
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control methodology, all measurement and control actions take place only at the sampling instances, i.e at the

beginning of the switching period.

The proposed approach carries several benefits – the most prominent being the systematic character of the

design procedure that avoids excessive iterations and tuning. In particular, the control objectives are expressed in

the cost function of the optimal controller in a straightforward manner, and all constraints are directly included

in the design procedure leading to a controller that achieves current limiting without adopting the traditional

implementation. Most importantly, the control law captures the whole operating regime due to the fact that the

derived PWA model provides an accurate representation of the converter for the whole operating range. This

leads to a favorable closed-loop performance that is independent from the operating point. Furthermore, the

proposed control scheme rejects gross disturbances in the (measured) input voltage and the (unmeasured) load

resistance.

These benefits, however, come at a cost. The derived controller is rather complex and the look-up table can

easily comprise 50 or more entries. In some applications this may prove to be a limiting factor. Yet, the main

scope of this paper is to illustrate that the application of advanced hybrid optimal control methods for dc-dc

converters is conceivable and within reach. This is confirmed by the experimental results obtained. Moreover,

compared with only locally valid controllers, a more complex solution is to be expected since the control

problem is addressed for the complete operating regime.

The paper is organized as follows. Section II summarizes thenonlinear continuous-time state-space equations

of the converter. Theν-resolution modelling approach, which yields a discrete-time hybrid converter model,

is introduced and analyzed in Section III. Based on this model, we formulate and solve a constrained finite

time optimal control problem in Section IV. Experimental results in Section V illustrate various aspects of the

system’s behavior, including start-up and gross changes inthe input voltage and the load resistance. The paper

is summarized in Section VI, where conclusions are also drawn.

II. M ATHEMATICAL MODEL OF SYNCHRONOUSCONVERTER

We start by modelling the physical behavior of the synchronous step-down converter in continuous time and

derive for each mode of operation the state-space equations. This model will serve later as starting point for

obtaining a model for controller design.

The circuit topology of the converter is shown in Fig. 1, where Ro denotes the output load, which we assume

to be ohmic,Rc is the Equivalent Series Resistance (ESR) of the capacitor,Rℓ is the internal resistance of the

inductor,L andC represent the inductance and the capacitance of the low-pass filtering stage, respectively, and

Vs denotes the input voltage. The semiconductor switchesS1 and S2, which are operated dually, are driven

by a pulse sequence with a constant switching frequencyfs (with periodTs). The duty cycled is defined by

d = ton

Ts
, whereton represents the interval within the switching period duringwhich the primary switch is in

conduction. For every switching periodk the duty cycled(k) ∈ [0, 1] is chosen by the controller.

We defineX(t) = [Iℓ(t) Vc(t)]
T as the state vector, whereIℓ(t) is the inductor current andVc(t) the capacitor

voltage. Given the duty cycled(k) during thek-th period, the system is described by the following set of affine
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Fig. 1: Topology of the step-down synchronous converter

continuous-time state-space equations. WhileS1 is conducting, they are given by

dX(t)

dt
= FX(t) + fVs, kTs 6 t < (k + d(k))Ts , (1)

and whenS1 is off, the system evolves autonomously according to

dX(t)

dt
= FX(t), (k + d(k))Ts 6 t < (k + 1)Ts , (2)

where the matricesF andf are given by

F =





− 1
L

(Rℓ + RoRc

Ro+Rc
) − 1

L
Ro

Ro+Rc

1
C

Ro

Ro+Rc
− 1

C
1

Ro+Rc



 (3)

and

f =





1
L

0



 , (4)

respectively. The output voltageVo(t) across the loadRo is expressed as a function of the states through

Vo(t) = gT X(t) (5)

with

g =
[

RoRc

Ro+Rc

Ro

Ro+Rc

]T

. (6)

Of main interest from a control point of view is the output voltage error

Vo,err(k) =
1

Ts

∫ (k+1)Ts

kTs

(Vo(t) − Vo,ref ) dt (7)

integrated over thek-th switching period, whereVo,ref denotes the reference of the output voltage.

The converter model includes constraints. By definition, the duty cycled(k) is constrained between zero and

one. Moreover, a current limiting constraint has to be accounted for, which is given by−Iℓ,max < Iℓ(t) <

Iℓ,max.

III. M ODELLING FOR CONTROLLER DESIGN

In the following, we derive a model to serve as prediction model for the optimal control problem formulation

in Section IV. For this, we reformulate the above presented converter model and introduce theν-resolution

modelling approach.
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A. Normalization and Reformulation

First, to obtain a numerically suitable model for controller design, the converter equations are normalized. This

is done by using the switching frequency, the nominal load resistance and the measured input voltage as base

quantities. From these, the base current, base capacitanceand base inductance can be deduced straightforwardly

(see the Appendix for details). Second, from an implementation point of view, it is preferable that all states are

directly measureable. Thus, in the state vector we replace the capacitor voltage by the output voltage1.

Using the normalized and measureable state vectorx(t) = [iℓ(t) vo(t)]
T , the system equations are rewritten

as

dx(t)

dt
=







Fx(t) + f, kTs 6 t < (k + d(k))Ts

Fx(t), (k + d(k))Ts 6 t < (k + 1)Ts

(8a)

vo(t) = gT x(t) , (8b)

whereVs in (1) does not appear in (8a) since the input voltage has beenchosen to coincide with the base

voltage. The matricesF , f andg turn into

F = 2πfs





− rℓ

xℓ
− 1

xℓ

ro
xℓ−rcrℓxc

(ro+rc)xcxℓ
− xℓ+rcroxc

(ro+rc)xcxℓ



 ,

f = 2πfs





1
xℓ

ro

ro+rc

rc

xℓ



 , g =
[

0 1
]T

,

(9)

using the normalized physical quantities to calculate their entries. The relation for the normalized output voltage

error is given by

vo,err(k) =
1

Ts

∫ (k+1)Ts

kTs

(vo(t) − vo,ref ) dt (10)

with the normalized output voltage referencevo,ref =
Vo,ref

Vs
. Furthermore, we use the base currentIb defined

in the Appendix to normalize the current limit to

iℓ,max =
Iℓ,max

Ib

. (11)

Strictly speaking the converter model (8), which is normalized with respect to the input voltage, holds only

for piecewise constantVs. For the prediction model to be valid, one only needs to assume that the input voltage

remains constant within the limited time of the prediction interval (a few switching periods). Since in practice

the input voltage is either piecewise constant or varies only slowly compared to the (very short) switching

period, the normalized state equations can serve as a sufficiently accurate prediction model.

Before proceeding, we elaborate on the parameters of the normalized and reformulated model. For the

controller design, we assume thatrc, rℓ, xℓ andxc are constant. Moreover, we assume that the load resistance

ro is constant2, too, but the input voltageVs may vary with time. Since the normalization renders the prediction

model equations independent of (the time-varying)Vs, the matricesF , f andg in (9) are time-invariant. Hence,

1In general, such a substitution is not advisable, since the output voltage of most dc-dc converters is not continuous overtime. For the

step-down converter treated here, however, the output voltage is a continuous function of time.

2In Section IV-C, we will relax this assumption and introduce aKalman filter to account for (unmeasured) changes inro.
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Fig. 2: Theν-resolution modelling approach visualized for thek-th period

the only time-varying model parameters are the normalized output voltage referencevo,ref and the normalized

current limit iℓ,max.

B. ν-Resolution Discrete-Time Hybrid Model

Using the normalized and reformulated continuous-time model derived in the previous section as a starting

point, the goal of this section is to derive a model of the converter that is suitable to serve as a prediction model

for the optimal control problem formulation. This model should have the following properties. First, it is natural

to formulate the model and the controller in the discrete-time domain, as the manipulated variable given by the

duty cycle is constant within the switching period and changes only at the time-instantskTs, k ∈ N0. Second,

it would be beneficial to capture the evolution of the states also within the switching period, as this would

enable us to impose constraints on the states not only at time-instantskTs but also on intermediate samples.

This is needed to keep the peaks of the inductor current belowthe current limit. Third, the model needs to

yield an approximation of the output voltage error given by the integral (10).

Hereafter, we introduce theν-resolution modelling approach that accounts for all the above requested

properties. As illustrated in Fig. 2, the basic idea is to divide the period of lengthTs into ν notional subperiods

of lengthτs = Ts/ν with ν ∈ N, ν ≥ 1. Within thek-th period, we useξ(n) to denote the states at time-instants

kTs + nτs with n ∈ {0, 1, . . . , ν}. Furthermore, by definition,ξ(0) = x(k) andξ(ν) = x(k + 1) hold.

We would like to stress that the controller samples the physical plant only everyTs. SubdividingTs into

subperiods doesnot imply a higher sampling rate. Theν-resolution approach increases the model accuracy

beyond standard averaging while retaining the sampling interval Ts.

For each subperiod, we introduce the two modes of operation discussed above (switch closed and open,

respectively) plus an additional third (auxiliary) mode that captures the transition from mode one to mode two.

More specifically, the modes are (i) the switchS1 remains closed for the whole subperiod, (ii) the switchS1

is open for the whole subperiod, and (iii) the switchS1 is opening within the subperiod. Hence, for then-th
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subperiod, the state-update equation is

ξ(n + 1) =



















Φ ξ(n) + Ψ, d(k) ≥ n+1
ν

Φ ξ(n), d(k) < n
ν

Φ ξ(n) + Ψ(νd(k) − n), n
ν
≤ d(k) < n+1

ν
,

(12)

whereΦ and Ψ are the discrete-time representations ofF and f as defined in (9) with “sampling” timeτs.

Note that if the third mode is active, i.e.n
ν
≤ d(k) < n+1

ν
holds,νd(k)−n is bounded by zero and one. Thus,

the third mode is a weighted average of the modes one and two.

The safety current limit is imposed on the evolution of the statesξ(n) by adding the constraints

−iℓ,max ≤ [1 0] ξ(n) ≤ iℓ,max, n = 0, 1, . . . , ν − 1 . (13)

The notion of theν-resolution modelling thus allows us to impose the current limit on the statesξ(n) with the

fine resolutionTs

ν
rather than only on the statesx(k) with the coarse resolutionTs.

Using the output voltage given by

vo(n) = gT ξ(n) , (14)

we approximate the voltage error integral (10) for thek-th period in the following way.

vo,err(k) =

ν−1
∑

n=0

vo(n) + vo(n + 1)

2ν
− vo,ref (15)

Before proceeding, we define constraints on the states, the parameters and the duty cycle. For the states, we

requirex ∈ X , and the parameter vectorvp = [vo,ref iℓ,max]T is restricted tovp ∈ V, whereV is application

specific. The duty cycle, on the other hand, is physically restricted tod ∈ U = [0, 1].

In summary, theν-resolution modelling approach provides a description of the state evolution within one

period. In particular, the discrete-time sequence[ξ(0), ξ(1), . . . , ξ(ν)] is an accurate representation of the

continuous-time evolution ofx(t) for t ∈ [kTs, (k + 1)Ts]. The only approximation introduced is the weighted

average that appears in the third mode of (12) when switchS1 is turned off. By increasingν the error introduced

by averaging can be made arbitrarily small. This adds to the model complexity, but does not affect the sampling

rate.

C. Formulation of ν-Resolution Model in PWA Form

For the computation of the state-feedback control law, the converter model is required to be in piecewise

affine (PWA) form. Polyhedral PWA systems are defined by partitioning the state-input space into polyhedra

and associating with each polyhedron an affine state-updateand output function [21].

Starting fromξ(0) = x(k) the discrete-time state-update map of the PWA model can be easily derived by

using (12) consecutively forn ∈ {0, 1, . . . , ν − 1} up to x(k + 1) = ξ(ν). This state-update function maps the

sampled statex(k) from time-instantkTs to time-instant(k + 1)Ts. As an example forν = 2 this is

x(k + 1) = Φ2x(k)+

+







2ΦΨd(k), d(k) ∈ [0, 1
2 ]

ΦΨ + 2Ψ(d(k) − 1
2 ), d(k) ∈ [ 12 , 1]

,
(16)
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Fig. 3: Accuracy (2-norm error) of the state-update function of theν-resolution model with respect to the nonlinear dynamics

where the matricesΦ andΨ are derived by exact time-discretization over the subperiod τs = Ts

2 , i.e. Φ = eFτs

andΨ =
∫ τs

0
eF (τs−t)dt f .

Since the converter dynamics are linear in the states, thereis no partitioning in the state-space. Yet, they

are nonlinear in the duty cycle. Theν-resolution model approximates this nonlinearity by partitioning the duty

cycle in ν segments and by averaging the transition from the first to thesecond mode by a third (auxiliary)

mode.

Using (12) in a similar way the current limit (13) and the output function (15) are computed. Obviously,

(13) and (15) only depend on the state vector and duty cycle attime-instantkTs.

D. Analysis of ν-Resolution Hybrid Model

For the set of converter parameters in Table I, Fig. 3 shows the accuracy of the state-update function of the

ν-resolution model with respect to the nonlinear dynamics given by

x(k + 1) = eFTsx(k) +

∫ d(k)Ts

0

eF (Ts−t)dt f , (17)

which is the exact discrete-time mapping from time-instantkTs to (k + 1)Ts. Specifically, the 2-norm (sum of

squares) of the state-update error is plotted as a function of the duty cycle forν = 1, 2, 3. For ν = 2 this error

is given by the difference between (16) and (17). As the erroris independent of the statex(k), this comparison

holds for the whole state-space.

The choice ofν = 1 yields the standard (discrete-time) averaged model, whichis predominately used for

the controller design of dc-dc converters.

x(k + 1) = Φx(k) + Ψ d(k) (18)

with Φ = eFTs andΨ =
∫ Ts

0
eF (Ts−t)dt f . Obviously, the averaged model is perfectly accurate ford(k) = 0

andd(k) = 1, and it is at its worst ford(k) = 0.5. As one can see, settingν to 2 significantly improves the

accuracy of the model.

Note that the hybrid model is continuous in the states and input. This follows from the state-update equa-

tion (16) and is confirmed by the continuity in Fig. 3. Moreover, we would like to stress once more that the
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ν-resolution model represents an accurate approximation ofthe nonlinear discrete-time dynamics (17) for all

operating points, rather than being valid only locally for aspecific operating point, as standard linearization

would do. The trade-off between model accuracy and complexity is determined by the design parameterν.

IV. CONSTRAINED OPTIMAL CONTROL

In this section, we propose a new constrained optimal control scheme for dc-dc converters. Such a controller

can be considered as an extension of the Linear Quadratic Regulator to PWA systems. The controller derivation

is done in three steps. First, an objective function is formulated. Second, an optimal state-feedback control law

is derived, which minimizes the objective function subjectto the evolution of the nominalν-resolution model

(nominal loadro = 1 p.u.) and the constraints. In a last step, the controller is augmented by a Kalman filter,

which adds an effective way to address unmeasured changes inthe load resistor.

As stated earlier, we assume that the input and output voltages Vs and Vo, respectively, and the inductor

current Iℓ can be measured. The output reference voltageVo,ref and the current limitIℓ,max are given by

the problem setup. Based on those measurements and parameters, the normalized quantitiesvo, vo,ref , iℓ and

iℓ,max, which will be used as the inputs to the optimal controller, directly follow3.

A. Objective Function

The control objectives are to regulate the average output voltage to its reference as fast and with as little

overshoot as possible, or equivalently, to (i) minimize theoutput voltage errorvo,err (ii) despite changes in the

input voltageVs or changes in the load resistancero, and (iii) to respect the constraints on the inductor current

and the duty cycle. For now, we assume that the load resistance ro is time-invariant and nominal. We will drop

this assumption in Section IV-C.

To induce a steady state operation under a constant non-zeroduty cycle, we introduce the difference between

two consecutive duty cycles

∆d(k) = d(k) − d(k − 1) . (19)

Next, we define the penalty matrixQ = diag(q1, q2) with q1, q2 ∈ R
+ and the vectorε(k) = [vo,err(k) ∆d(k)]T

with vo,err(k) as defined in (15). We combine the (measured) statex(k), the last control inputd(k − 1), the

output voltage referencevo,ref (k) and the current limitiℓ,max(k) into the parameter vector

p(k) = [(x(k))T d(k − 1) vo,ref (k) iℓ,max(k)]T , (20)

wherex ∈ X ∈ R
2, d ∈ U = [0, 1] and [vo,ref iℓ,max]T ∈ V ∈ R

2. Consider the objective function

J(p(k),D(k)) =
N−1
∑

ℓ=0

‖Q ε(k + ℓ|k)‖1 , (21)

which penalizes the predicted evolution ofε(k + ℓ|k) from time-instantkTs on over the finite horizonN using

the 1-norm (sum of absolute values). Note that the objective function not only depends on the sequence of

3Since the circuit parameters are normalized over the time-varying input voltageVs, the gains used for normalization are also time-varying

and need to be recalculated at the beginning of each switching period, when a new measurement ofVs is acquired.
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control inputsD(k) = [d(k), . . . , d(k + N − 1)]T and the (measured) statex(k), but also on the last control

input d(k − 1), the output voltage referencevo,ref (k) and the current limitiℓ,max(k), which are allowed to be

time-varying to account for changes in the input voltageVs(k).

Summing up, objective (i) is incorporated in the objective function, whereas objective (ii) is handled by

normalizing the prediction model byVs, feeding the model withvo,ref , and adding in a later stage a Kalman

filter. Objective (iii) is easily accounted for in the prediction model, where hard constraints are imposed on the

inductor current and the duty cycle.

B. Constrained Optimal Control

At time-stepkTs the constrained optimal control problem is the following. Given the so called parameter

vector p(k) defined in (20), minimize the objective function (21) over the sequence of control inputsD(k)

subject to the evolution of theν-resolution model in PWA form (e.g. (16)), the constraints on the sequence of

duty cycles

0 ≤ d(ℓ) ≤ 1 , ℓ = k, ..., k + N − 1 , (22)

similar constraints on the inductor current and the expression (19). The solution of this control problem can

be pre-computed off-line for allp ∈ X × U × V. To do so, we use the algorithm described in [22], where

the solution is generated by combining dynamic programmingwith multi-parametric programming and some

basic polyhedral manipulations. The resulting optimal state-feedback control law is a PWA function ofp(k)

defined on a polyhedral partition of the five-dimensional parameter-spaceX × U × V. More specifically, the

parameter-space is partitioned into polyhedral sets and for each of these sets the optimal control law is given as

an affine function of the parameter vector, which includes the state. For more details concerning the algorithm,

the properties of its solution and computational tools the reader is referred to [23].

Example 1: Consider a step-down converter with the parameters given inTable I. Let the corresponding

ν-resolution model (in PWA form) withν = 2 be defined on the setX = [−4, 4] × [−0.1, 1] p.u.,U = [0, 1]

andV = [0.05, 1]× [0, 3] p.u.. Then, for the control problem parameters given in Table I, we compute the PWA



10

state-feedback control law using the Multi-Parametric Toolbox [24]. The resulting controller is defined on 103

polyhedral regions in the five-dimensional parameter-spaceX ×U ×V. Using the optimal complexity reduction

algorithm [25], the controller is simplified to 50 regions.

To visualize the state-feedback control law, we substitutevo,ref = 0.6 p.u. andiℓ,max = 0.89 p.u. into

the control law. As a result, the control law, which refers now to the nominal case, is defined on the three-

dimensional spaceX×U . Fig. 4 depicts the control inputd(k) as a PWA function ofx(k), where we additionally

set d(k − 1) = 0.67. Note that the control law is well-defined, that is for eachx(k) ∈ X and d(k − 1) ∈ U

there exists a polyhedron and an associated affine control law such thatd(k) can be evaluated.

This control law, which is essentially a collection of (affine) P-controllers, can be interpreted as follows. In a

small neighborhood of the steady state operating point, which is given byiℓ = 0.566 p.u.,vo = 0.5976 p.u. and

d(k) = 0.67, the controller resembles an affine P-controller. Further away from the operating point the behavior

of the controller changes drastically. In particular, the control law saturates to respect the[0, 1] constraint on the

duty cycle and achieve optimality with respect to the objective function (21). For very low (very high) output

voltages, in the region where the upper (lower) current constraint becomes active, the control law renders a

very small (or even zero) duty cycle in order to avoid its violation. This is reflected in the “bending” of the

control law visible in Fig. 4.

As is to be expected, the constrained optimal controller resembles the behavior of the existing traditionally

designed PI-type control schemes including a current limit(and possibly also an anti-windup scheme). This is

because the control objectives are the same in both cases. The major difference, however, is the validity of the

controller for all operating points and the direct design procedure. This is in contrast to the (traditional) linear

controller design that is valid only for a specific operatingpoint.

C. Load Variations

In the following, we drop the assumption that the load resistance is known and time-invariant. To provide

offset-free tracking of the output voltage reference despite unknown variations in the load, a loop is added.

Specifically, the previously derived state-feedback controller (for a time-invariant and nominal load) is aug-

mented by an external estimation loop that provides state estimates and also adjusts the normalized output

voltage reference such that the error between the output voltage and itsactual reference is made small.

Although such a voltage reference manipulation can be (and is conventionally) achieved by just adding an

external PI loop, we opt in this paper for the use of a discrete-time Kalman filter [26] that yields a zero

steady-state output voltage error due to its integrating character. The advantage of the employed approach is

that with the Kalman filter no special anti-windup structure(the design of which would again depend on the

operating point and on the expected load and set point changes) for handling the possible saturation of the

related signals is required. In accordance with [27], the PWA model of the converter is augmented by two

integrating disturbance statesie andve that are used to model the effect of the changing load resistance on the

inductor current and the output voltage respectively. The Kalman filter is used to estimate the augmented state

vector

xa =
[

iℓ vo ie ve

]T

, (23)
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based on the measurements ofiℓ and vo. For the caseν = 2 considered in this paper, the augmented model

has the switched stochastic discrete-time state equations

xa(k + 1) = Φ2
axa(k) + Gw1(k)+

+







2ΦaΨad(k), d(k) ∈ [0, 1
2 ]

ΦaΨa + 2Ψa(d(k) − 1
2 ), d(k) ∈ [12 , 1]

,
(24)

and the measurement equation




iℓ(k)

vo(k)



 =Caxa(k) + Hw2(k) , (25)

with

Φa =





Φ 0

0 H



 , Ψa =











Ψ

0

0











, (26)

Ca =





1 0 1 0

0 1 0 1



 ,

andG = diag(1, 1, 1, 1) andH = diag(1, 1). The random variablesw1(k) ∈ R
4 andw2(k) ∈ R

2 represent the

process and the measurement noise, respectively, with normal (Gaussian) probability distributions of covariance

E[w1w
T
1 ] = W1, E[w2w

T
2 ] = W2 satisfyingGW1G

T � 0 andW2 + HW1H
T ≻ 0. The augmented model is

detectable and uses the nominal value of the load resistor.

To address the hybrid nature of the model, a discrete-time Kalman filter with the same number of modes

as the augmented PWA model of the converter is employed. Switching between the modes is trivial since the

active mode of the PWA model (and hence of the Kalman filter) isimposed by the duty cycle and is therefore

precisely known. For each mode the Kalman gain is constant, and since the state-update, the measurement and

the covariance matrices are the same for all modes, it is trivial to show that the Kalman gains are the same,

too. Therefore, only a single Kalman gainK needs to be computed and implemented.

The dynamic of the estimated statex̂a(k) is described by

x̂a(k + 1) = Φ2
ax̂a(k) + KCa(xa(k) − x̂a(k))

+







2ΦaΨad(k), d(k) ∈ [0, 1
2 ]

ΦaΨa + 2Ψa(d(k) − 1
2 ), d(k) ∈ [12 , 1]

.
(27)

To calculate the Kalman gain, the noise covariances matrices W1 andW2 are chosen such that high credibility

is assigned to the measurements and dynamics of the physicalstates, namelyiℓ andvo, while low credibility is

assigned to the dynamics of the disturbance statesie andve. As a result, the Kalman filter provides estimates

of the “slow” disturbances that can in turn be used to remove their influence from the output voltage. This is

achieved by using the estimates of the states as inputs to thecontroller, while at the same time adjusting the

output voltage referencevo,ref by the estimate of the corresponding disturbance statev̂e

ṽo,ref = vo,ref − v̂e . (28)
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Converter parameters

in S.I. in p.u.

L 1 mH xℓ 14.12 p.u.

C 220µF xc 246.1 p.u.

Rc 0.5Ω rc 0.0562 p.u.

Rℓ 1.5Ω rℓ 0.1685 p.u.

Ro 8.9Ω (nominal) ro 1 p.u. (nominal)

Iℓ,max 1 A iℓ,max 0.89 p.u.(nominal)

Vs 12 V (nominal) vs 1 p.u. (nominal)

Vo,ref 6 V vo,ref 0.6 p.u.(nominal)

Controller parameters

ν 2 N 2

q1 4 q2 0.1

fs 20 kHz

TABLE I: Converter and controller parameters of the experimental results, where the parasitics are approximated values only

Moreover, since the controller uses the inductor current estimated by the Kalman filter, which equals the sum of

the actual currentiℓ and of the estimated disturbanceîe, we also update the current limit constraint accordingly

ĩℓ,max = iℓ,max − îe . (29)

V. EXPERIMENTAL RESULTS

In this section, experimental results demonstrating the potential advantages of the proposed control method-

ology are presented. Specifically, we examine the closed-loop dynamical behavior for the start-up, and the

response to step changes in the input voltage and the load resistance, respectively.

The experimental setup was built using commercial electronic components – specifically, the switching stage

comprises a IRF620 MOSFET and RURP1560 fast diode. The circuit parameters of the converter are summarized

in Table I. If not stated otherwise, the input voltage isVs = 10 V and the load resistance is given byRo = 8.9 Ω.

The output voltage reference isVo,ref = 6 V. The switching frequency is set to20 kHz corresponding to a

sampling interval of50µs.

The constrained optimal controller was implemented on a dSPACETM DS1103 PPC controller board, where

dSPACE allowed the development of the control software in a MATLAB /SIMULINK environment. Access to

the I/O of the real-time hardware was obtained through Real Time Workshop blocks, allowing for a flexible

and quick controller implementation. To protect the dSPACETM controller board, a TLP2200 photo-coupler

was used to electrically separate the controller from the dc-dc converter power circuit, and an IR2118 driver

switched the MOSFET on or off. The inductor current measurement was obtained with a Hall effect transducer.

The ν-resolution model uses the same parameters as the physical plant model, with the difference that it

is normalized with respect toVs and that it always uses the nominal loadro = 1 p.u.. The choice ofν = 2
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replacements

Inductor Current

Output Voltage

330mA

2V

660mA

1ms

6V

Time

(a) Inductor current and output voltage

Inductor Current

Duty Cycle

330mA

0.5

660mA

1ms

1

0

Time

(b) Inductor current and duty cycle

Fig. 5: Experimental results for nominal start-up from initial condition zero

subperiods leads to aν-resolution model that captures the nonlinear discrete-time dynamics in a sufficiently

accurate way.

Regarding the optimal control scheme, the penalty matrix ischosen to beQ = diag(4, 0.1), putting a rather

small weight on the changes of the manipulated variable4. For all experiments, the prediction horizon is set

to N = 2. Based on this, as detailed in Example 1, the PWA state-feedback control law shown in Fig. 4 is

derived.

For the covariance matrices of the Kalman filter, we setW1 = diag(0.1, 0.1, 100, 100) andW2 = diag(1, 1).

A. Nominal Start-Up

Fig. 5(a) shows the inductor current and the output voltage of the converter in nominal operation (Ro = 8.9 Ω,

Vo,ref = 6 V) during start-up from zero as initial condition. As can be seen, the controller increases the current

until the current limit is reached to charge the capacitor tothe reference voltage level as fast as possible. Once

the output voltage reaches its reference, the controller quickly restores the current to its nominal value to avoid

any overshoot inVo. For the same experiment (in a different instance), one can observe in Fig. 5(b) the evolution

of the duty cycle, paired with the inductor current to allow for a direct comparison.

B. Step Changes in Input Voltage

Initially, the converter is operating at steady state with the input voltageVs = 16 V when a ramp down

to Vs = 10 V is applied. This disturbance is measured and fed to the controller at the beginning of the next

switching period. The response of the converter is shown in Fig. 6, where one can see two different instances

of the same experiment. Fig. 6(a) depicts the waveforms of the output voltage and the input voltage ramp,

4The penalty matrix determines the trade-off between the output voltage error and the controller effort (changes in the duty cycle).

Hence, only the ratio between the diagonal elements is of importance. A ratio of 40 yields small output voltage errors with limited control

effort. Ratios in the range of 30 to 60 yield very similar results.
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replacements

Input Voltage

Output Voltage

5V

200mV

10V

1ms

6V

Time

(a) Input voltage and output voltage

Input Voltage

Duty Cycle

5V

0.5

10V

1ms

1

0

Time

(b) Input voltage and duty cycle

Fig. 6: Experimental results for a ramp change in the input voltage fromVs = 16 V to Vs = 10 V within roughly 1 ms

while Fig. 6(b) shows the controller action. The output voltage remains practically unaffected and the controller

settles very quickly at the new steady-state duty cycle.

As can be seen, disturbances in the input voltage are rejected very effectively by the controller, and the

output voltage is quickly restored to its reference. This isbecause the state-feedback control law is indirectly

parameterized by the input voltage by normalizing the measured states, the output voltage reference and the

current limit with respect toVs. As a result, the performance of the controller is not affected by changes inVs.

C. Step Changes in Load Resistance

In a last step, we investigate the closed-loop performance in the presence of major step changes in the load

resistance. Starting from the nominal loadRo = 8.9 Ω, step changes toRo = 15 Ω andRo = 4 Ω are applied.

As in the experiments above, theν-resolution model and the state-feedback control law are designed assuming

nominal load conditions. Yet, in the sequel, the Kalman filter is added to adjust the output voltage reference

vo,ref accordingly.

Fig. 7 depicts the closed-loop performance of the converterfor the step-up case. As can be observed, steady-

state operation without a steady-state error in the output voltage is achieved due to the Kalman filter’s inherent

integrating action. Moreover, the converter response exhibits a relatively small overshoot.

In the last case, we examine a crucial aspect of the controller operation, namely the system’s protection

against excessive load currents, by applying a load drop from nominal toRo = 4 Ω chosen to activate the

current limiting constraint of the controller. The experimental results in Fig. 8 show that the controller respects

the current limit and forces the output voltageVo to drop to the level needed to respect the constraint.

Even though such a current limiting protection scheme is present in all practical implementations, it is not

directly treated as part of the controller design, but the current limit is imposed through an additional current

loop. The proposed approach addresses the current constraint (as well as the duty cycle constraint) explicitly

during the controller design.
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1->

2->

1) [tds].Data.Waveforms.CH 1 200 mV 500 uS

2) [tds].Data.Waveforms.CH 2 200 mV 500 uS

replacements

Inductor Current

Output Voltage

330mA

100mV

660mA

500µs

6V

Time

(a) Inductor current and output voltage

3->

3) [tds].Data.Waveforms.CH 1 200 mV 500 uS

4) [tds].Data.Waveforms.CH 2 2 V 500 uS

Inductor Current

Duty Cycle

330mA

0.2

660mA

500µs

0.6

0.2

Time

(b) Inductor current and duty cycle

Fig. 7: Experimental results for a step-up change in the load resistance fromRo = 8.9Ω to Ro = 15Ω

1->

1) [tds].Data.Waveforms.CH 1 200 mV 1 mS

Inductor Current

Output Voltage

330mA

1V

1A

1ms

6V

Time

(a) Inductor current and output voltage

1->

2->

1) [tds].Data.Waveforms.CH 1 200 mV 500 uS

2) [tds].Data.Waveforms.CH 2 5 V 500 uS

Inductor Current

Duty Cycle

330mA

0.5

1A

500µs

1

0

Time

(b) Inductor current and duty cycle

Fig. 8: Experimental results for a drop in the load resistancefrom Ro = 8.9Ω to Ro = 4Ω showing the activation of the current limit

constraint

Due to space limitations we do not provide here an elaborate comparison between the constrained optimal

controller and traditional control techniques. Such a comparison is available from [28], where the performance

of a constrained optimal controller is compared to the one achieved by a classic peak current mode control

scheme.

Regarding the robustness of the constrained optimal control scheme with respect to model uncertainty, further

to the evidence provided by the experimental results, simulation studies have shown that the proposed scheme

can handle large variations in the converter parameters, without any significant performance deterioration.

Although such studies cannot be presented here in any detail, the reader is referred to [29], where the MATLAB

simulation files used for the development and evaluation of our controller are available for downloading and

testing of the system behavior.
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VI. CONCLUSIONS

We have presented a new modelling and control approach for fixed frequency switch-mode dc-dc converters

by formulating a constrained optimal control problem usinghybrid systems methodologies. The method is

presented here for the synchronous step-down dc-dc converter, but as shown in [30], [31] and [32], it is directly

extendable to other converter topologies including the boost and the buck-boost converter.

More specifically, a novelν-resolution hybrid model was introduced to avoid averagingand to model the

converter in an arbitrarily accurate way, and a constrainedfinite time optimal control problem was formulated

and solved. This control methodology allowed us to explicitly take into account during the design phase physical

constraints, such as the restriction of the duty cycle between zero and one, and safety constraints, such as current

limiting. The resulting PWA state-feedback controller defined on a polyhedral partition of the parameter-space

facilitates the practical implementation of the proposed scheme since it is nothing else but a very effective

look-up table.

This controller is parameterized not only by the measured and normalized statesiℓ(k) and vo(k), and the

previous duty cycled(k−1), but also by the normalized output voltage referencevo,ref (k) and the normalized

current limit iℓ,max(k). This allowed us to efficiently reject disturbances in the input voltage of any magnitude.

Moreover, the addition of a Kalman filter estimating the output voltage error and adjusting the voltage reference

accordingly provides disturbance rejection to large changes in the load resistance. These include low load

resistances, for which the output voltage is dropped such that the safety constraint is respected. Experimental

results have been provided demonstrating that the proposedcontroller leads to a closed-loop system with

favorable dynamical properties – in particular during start-up and transients. Moreover, as shown in [10],

exponential stability for the nominal closed-loop system can be proven by deriving a piecewise quadratic

Lyapunov function.

Even though the control law computation and analysis relieson several algorithms and extensive computations,

the derivation is greatly simplified by the Multi-Parametric Toolbox [24] that provides a unified framework for

the modelling, synthesis and analysis of hybrid systems. All computational tools needed to reproduce the results

shown in this paper are contained in this toolbox, and the MATLAB files for setting up and simulating the dc-dc

converter can be downloaded from [29].
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VIII. A PPENDIX

To normalize the converter equations (1)–(7), the actual (time-varying) input voltageVs(k), the nominal

(time-invariant) load resistanceRo and the (time-invariant) switching frequencyfs are used as base quantities.

SettingRb = Ro, one can deduce the base inductance and capacitance as

Lb =
Rb

2πfs

, Cb =
1

2πfsRb

, (30)

respectively. The normalized values of the inductance and the capacitance of the converter are defined as

xℓ =
L

Lb

, xc =
C

Cb

. (31)

Similarly, the resistances of the circuit are normalized through

rℓ =
Rℓ

Rb

, rc =
Rc

Rb

, ro =
Ro

Rb

. (32)

Using the measured (and hence time-varying) input voltageVs(k) as base quantity, the (time-varying) base

current at time-instantk follows as

Ib(k) =
Vs(k)

Rb

(33)

leading to the normalized output voltage and inductor current

vo(k) =
Vo(k)

Vs(k)
, iℓ(k) =

Iℓ(k)

Ib(k)
, (34)

respectively.


