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Abstract—Industrial applications of medium-voltage drives
impose increasingly stringent performance requirements,particu-
larly with regards to harmonic distortions of the phase currents
of the controlled electrical machine. An established method to
achieve very low current distortions during steady-state operation
is to employ offline calculated optimized pulse patterns (OPP).
Achieving high dynamic performance, however, proves to be very
difficult in a system operated by OPPs.

In this paper, we propose a method that combines the optimal
steady-state performance of OPPs with the very fast dynamics
of trajectory tracking control. A constrained optimal cont rol
problem with a receding horizon policy, i.e. model predictive
control (MPC), is formulated and solved. Results show that
the combination of MPC with OPPs satisfies both the strict
steady-state as well as the dynamic performance requirements
imposed by the most demanding industrial applications. This
is achieved without resorting to complicated structures such
as observers of the state variable fundamental components of
the electrical machine, which are required by state-of-the-art
methods. A further advantage of the MPC method is the use of
a receding horizon policy to provide feedback and a high degree
of robustness.

Index Terms—AC drive, optimized pulse pattern, pulse width
modulation, trajectory tracking control, model predictiv e control

I. I NTRODUCTION

Medium-voltage ac drives are operated at low switching
frequencies to minimize the switching losses of the power
semiconductors in the inverter. However, lowering the switch-
ing frequency typically increases the harmonic distortions of
the stator currents, resulting in high harmonic losses in the
electrical machine. One solution is to employ offline calculated
pulse patterns in the inverter’s modulator that minimize the
current harmonics for a given switching frequency.

Traditionally, however, it has only been possible to use
such optimized pulse patterns (OPPs) in a modulator driven
by a very slow control loop. This leads to a poor dynamic
performance and to harmonic excursions of the stator currents
when the operating point is changed or when transitions
between different pulse patterns occur.

This paper describes a novel control and modulation strat-
egy, based on OPPs, that enables very fast response times
during transients, a fast rejection of disturbances, and a nearly
optimal ratio of harmonic current distortion per switching
frequency at steady-state operation. These OPPs are computed
in an offline procedure by calculating the switching angles
over a quarter fundamental period for all possible operating
points [1], [2]. Typically, the objective is to minimize the
harmonic current distortion for a given switching frequency.
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When field oriented control (FOC) is used to command a
pulse width modulator that employs OPPs, the performance
of the overall control scheme is very limited, even in quasi
steady-state operation. Excursions of the harmonic currents
occur that may lead to overcurrent conditions [3]. Thus, the
application of field oriented current control with OPPs is
typically limited to grid-connected setups, where the operating
range is relatively small. When the goal is to use this method
in applications with widely varying operating points, as isthe
case for electrical machine control, the (inner) current control
loop is tuned to be very slow, such that its operation does not
interfere with the optimal volt-second balance of the OPPs.
However, such a tuning significantly decreases the dynamic
performance of the drive.

As an improvement to FOC with OPPs,current trajectory
tracking was proposed in [4]. This method derives the optimal
steady-state stator current trajectory from the pulse pattern in
use. The actual stator current space vector is forced to follow
this target trajectory. A disadvantage is that the stator current
trajectory depends on the parameters of the electrical machine,
specifically on the total leakage inductance [5]. Changing load
conditions have also been found to influence the stator current
trajectory.

A further improvement can be made by tracking thestator
flux trajectory[6], which is insensitive to parameter variations
and is thus better suited for tracking control. By controlling the
stator flux space vector to coincide with its optimal trajectory,
harmonic excursions are avoided that might appear when the
operating point changes. The method is however complex, as it
requires an observer to identify the instantaneous fundamental
components of the stator current and flux linkage vectors [7].
These signals are not readily available when using OPPs [5],
since the harmonic current is not zero at the sampling instants.
As a result, the fundamental machine quantities cannot be
directly sampled when using OPPs. This makes the design
of the closed-loop controller difficult, because these signals
are required to achieve flux and torque control. For this
reason, existing control schemes, such as [4], [8], employ an
observer to derive the instantaneous fundamental current and
flux linkage values separately from the respective harmonic
quantities.
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Fig. 1: Three-level neutral point clamped VSI driving an induction machine
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Fig. 2: Optimal pulse pattern withd = 5 primary switching angles for a three-level inverter. The three-phase switching sequence and the stator flux trajectory
correspond to the modulation indexm = 0.48. The primary switching angles are indicated by (black) circles

For reliability, simplicity of implementation and dynamic
performance reasons, the following three aims are targeted:
First, it is desirable to perform trajectory tracking control of
the stator flux vector without the need of a complex observer to
track the fundamental component of the stator flux or current
in real-time. This is one of the advantages of the concept
introduced in this paper. Second, the controller should have
reduced sensitivity to parameter variations and measurement
noise. Third, fast dynamic control is to be achieved while
performing the minimum possible modification of the offline
calculated pulse pattern sequences. These three objectives are
achieved by the controller proposed in this paper. The stator
flux trajectory controller is generalized, by formulating it as a
constrained optimal control problem with a receding horizon
policy, i.e. as model predictive control (MPC) [9]–[11].

Specifically, a prediction horizon of finite length in time
is used and the switching instants of the pulse pattern are
shifted such that a stator flux error is corrected within this
horizon. From the end of the horizon onwards, steady-state
operation is assumed. The underlying optimization problem
is solved in real-time, yielding a sequence of optimal control
actions over the horizon. Only the first control action of this
sequence is applied to the drive system, in accordance with the
so-called receding horizon policy. At the next sampling instant,
the control sequence is recomputed over a shifted horizon, thus
providing feedback and robustness to model inaccuracies. A
long horizon also renders the controller less susceptible to
measurement noise. The receding horizon policy is illustrated
in Fig. 3.

In this case, the underlying optimization problem constitutes
a quadratic program (QP), which can be solved efficiently in
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Fig. 3: Illustration of the receding horizon policy. The pulse pattern is re-
optimized over the prediction horizonTp, but only the pattern over the
sampling intervalTs is applied to the drive

real time by approximation. It is also shown that a further
simplification yields the deadbeat (DB) trajectory controller
proposed in [6], which thus constitutes a special case of the
(more general) MPC controller introduced in this paper.

II. D RIVE SYSTEM CASE STUDY

Throughout this paper, we will use normalized quantities.
All variables ξabc = [ξa ξb ξc]

T in the three-phase system
(abc) are transformed toξαβ = [ξα ξβ ]

T in the stationary
orthogonalαβ coordinates throughξαβ = P ξabc with
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P−1 denotes the pseudo-inverse ofP .
As an illustrative example of a medium-voltage variable

speed drive system consider a three-level neutral point clamped
(NPC) voltage source inverter (VSI) driving an induction
machine (IM), as depicted in Fig. 1. The total dc-link voltage
Vdc over the two dc-link capacitorsCdc is assumed to be
constant.

Let the integer variablesua, ub, uc ∈ {−1, 0, 1} denote the
switch positions in each phase leg, where the values−1, 0, 1
correspond to the phase voltages−Vdc

2 , 0,
Vdc
2 , respectively. The

actual voltage applied to the machine terminals is given by
vαβ = 0.5VdcP uabc with u = uabc = [ua ub uc]

T .

III. O PTIMIZED PULSE PATTERNS

A. Offline Computation

When computing OPPs, a single-phase pulse pattern is
typically considered and quarter-wave symmetry is imposed.
The pulse patterns of the phasesa, b and c are obtained by
shifting the single-phase pattern by 0, 120 and 240 degrees,
respectively. As a result, the three-phase pulse pattern over
360 degrees is fully characterized by the single-phase pattern
over 90 degrees, see Fig. 2(a).

To compute the single-phase OPP over 90 degrees, the
number of primary switching angles (the pulse number)d
needs to be selected. An objective function is chosen for
the optimization—a common selection is the weighted sum
of the squared differential-mode voltage harmonics, whichis
effectively equivalent to the total harmonic distortion (THD)
of the current. For every value of the modulation index,
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Fig. 4: Boundary control problem formulated over the horizon Tp. The
transient pulse pattern drives the stator flux vectorψs from time t0 to t1
and links the switch positionsu

this objective function is minimized by optimizing over the
switching angles. This leads to a set of switching angles as a
function of the modulation index, characterizing the OPP as
shown in Fig. 2(b). For more details on the computation of
OPPs for multi-level inverters, see for example [12].

B. Stator Flux Trajectory

Consider an electrical machine connected to the inverter
terminals and neglect the machine’s stator resistance. The
steady-state stator flux trajectory in stationary coordinates,
which corresponds to the OPP in use, is obtained by integrating
the switched voltage sequencevαβ over time. Specifically, the
stator flux vectorψs = [ψsα ψsβ ]

T at time t is given by

ψs(t) = ψs(0) +
Vdc

2

∫ t

0

P uabc(τ)dτ . (2)

An example steady-state stator flux trajectory in stationary
coordinates is shown in Fig. 2(c) over 90 degrees. The average
amplitude of the stator flux trajectory is one, yet it is obvious
from Fig. 2(c) that the instantaneous amplitude of the stator
flux oscillates. The instantaneous angle of the stator flux vector
also oscillates around its nominal value. This ripple is the
result of variations in the instantaneous angular speed of the
stator flux vector, which necessarily arise when applying volt-
age vectors of different and discrete magnitudes. The ripples
on the magnitude and angle of the stator flux vector dictate
the discrete frequency spectrum of the current harmonics.

IV. M ODEL PREDICTIVE PULSE PATTERN CONTROL

Closed-loop control of an electrical machine based on OPPs
can be achieved by controlling the stator flux vector along its
reference trajectory. The magnitude of the stator flux trajectory
determines the magnetization current of the machine, whilethe
angle between the stator and the rotor flux vectors determines
the electromagnetic torque.

The flux error vector is the vector difference between the
reference flux trajectory and the actual trajectory of the stator
flux of the machine. Even at steady-state, this flux error vector
is generally non-zero due to non-idealities of the real-world
drive system. These non-idealities include fluctuations inthe
dc-link voltage, the presence of the stator resistance, neglected
in (2), and non-idealities of the power inverter, such as dead-
time effects. During transient operation, the flux error vector
is an accurate mapping of the change in the operating point.

A. Stator Flux Control Problem

The stator flux control problem can be interpreted as a
boundary control problem, as illustrated in Fig. 4. Starting
at time t0 with the switch positionu(t0) and the stator flux
ψs(t0), a transientpulse pattern over the time-intervalTp is
to be derived. This pulse pattern drives the stator flux vector to

-
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0 time
t∗a

∆ta

Fig. 5: Delaying the negative switching transition∆ua = −1 in phasea by
∆ta, with regards to the nominal switching timet∗a, increases the stator flux
component in this phase by0.5Vdc(−∆ua)∆ta

the terminal stator fluxψs(t1) and leads to the terminal switch
positionu(t1). In this boundary control problem,u(t0) and
ψs(t0) are the initial conditions, whileu(t1) andψs(t1) are
accordingly the terminal conditions.

The requirements for the transient pulse pattern include
the following: First, the transient pattern is required to be
optimal in the sense that it minimizes the current and/or torque
THD. It is also conceivable that the pulse pattern minimizes
the switching losses of the power converter switches, e.g. by
penalizing commutation angles that occur at high currents.
Next, excessive excursions of the stator flux and thus of
the stator currents are to be avoided to prevent over-current
conditions. Finally, the torque and the stator flux magnitude
are to be controlled around their references—at steady-state
operating conditions as well as during transients.

B. Principle of Model Predictive Pulse Pattern Control

The above stated control problem can be formulated as a
constrained optimal control problem with a so-called receding
horizon policy or, equivalently, as a model predictive control
(MPC) problem [11]. The key idea is to associate the pre-
diction horizon with the time intervalTp = t1 − t0, and to
drive the stator flux vector over this horizon to its desired
position, thus correcting the stator flux error. From the end
of the horizon onwards, steady-state operation is assumed.In
particular, the controllerassumesthat from t1 onwards the
original, i.e. thesteady-statepulse pattern, will be applied. It
is crucial to note, however, that due to the receding horizon
policy highlighted in the introduction and in Fig. 3, the steady-
state OPP willneverbe applied. Instead, at every time-step,
the first part of the modified OPP, i.e. the pattern over the
sampling intervalTs, will be applied to the drive system.

Under steady-state operating conditions, the stator flux error
is small, typically amounting to one to two percent of the
nominal flux magnitude. Therefore, only small corrections of
the switching instants are required to remove the flux error
over the horizon. As a result, the steady-state OPP can be used
as a baseline pattern while deriving the transient pulse pattern.
This greatly simplifies the control problem at hand, since re-
optimizing the OPP around its optimum is significantly less
computationally demanding than computing an entirely new
transient pulse pattern from scratch.

The control objective is then to regulate the stator flux vector
along its given reference trajectory in stationary coordinates,
by modifying the switching instants of the OPP within the
horizon as little as possible. As an example, consider phase
a. According to (2), shifting the switching transition by the
scalar time∆ta changes the phasea stator flux by

∆ψsa(∆ta) = −Vdc

2
∆ua∆ta , (3)

June 23, 2011 ECCE 2011



4

Speed

controller

Flux

reference

Pattern

controller

=
~~

Observer

Encoder

(optional)

Dc-link
Flux

controller

Pattern

selector

Torque

controller

ψ∗
r

Vdc d
OPP

ω∗
r T ∗

e γ∗ ∡ψ∗
s

ψ∗
s

ψs,err u

| · | ∡

ψr

Te

ψs

ωr

is

M

m

Fig. 6: Block diagram of the model predictive pulse pattern control (MP3C) scheme

where,∆ua = ua(t
∗
a) − ua(t

∗
a − dt) denotes the switching

transition in phasea, with ∆ua ∈ {−1, 1}. The nominal
switching time is given byt∗a anddt is an infinitesimally small
time step. All variables are given in per unit.

An example is shown in Fig. 5. Delaying the negative
switching transition∆ua = −1 by ∆ta increases the volt-
seconds and thus the stator flux in this phase. Advancing the
switching event has the opposite effect, i.e. it decreases the
flux amplitude in the direction of phasea. The same holds for
phasesb andc.

Compensation of the flux error vector in real time by
modifying the switching instants of the OPP, results in fast
closed-loop control. We refer to this control concept as model
predictive pulse pattern control (MP3C).

C. Optimality

It is important to point out that, as indicated above, optimal-
ity, i.e. minimal current THD, is achieved when the reference
stator flux trajectory is accurately tracked. Optimality isthus
defined in terms of the reference flux trajectory rather than in
terms of the steady-state voltage waveform. These two terms
coincide only at steady-state under ideal conditions. Optimality
can also be achieved for quasi steady-state conditions, by
ensuring that the reference flux trajectory is closely tracked.

During large transients, when major torque steps are applied
or when switching between different pulse patterns, the stator
flux error tends to be large and significant corrections of the
switching instants are mandatory. As a result, the transient
pulse pattern obtained by re-optimizing around the existing
OPP might be suboptimal. However, the notion of harmonic
distortion, which is based on the frequency analysis, is not
meaningful during such transients. Therefore, rather than
focusing on a minimal current THD, during transients the
controller aims at achieving a very fast dynamic response by
rapidly tracking the new stator flux reference trajectory.

D. Proposed MP3C Algorithm

The proposed MP3C algorithm is shown in the block
diagram in Fig. 6. It operates in the discrete time domain and
is activated at equally spaced time-instantskTs, with k ∈ N

being the discrete time-step andTs denoting the sampling
interval. The control problem is formulated and solved in
stationary orthogonal coordinates. The angular electrical stator

and rotor frequencies of the machine areωs andωr, respec-
tively. The algorithm comprises the following six steps, which
are executed at the time-instantkTs.

Step 1. Estimate the stator and rotor flux vectors in the
stationary reference frame. This yieldsψs = [ψsα ψsβ ]

T and
ψr = [ψrα ψrβ ]

T . Let ∡ψ denote the angular position of a
flux vector and|ψ| its magnitude.

Compensate for the delay introduced by the controller
computation time by rotating the estimated stator and rotor
flux vectors byωsTs forward in time, i.e.∡ψs = ∡ψs+ωsTs
and accordingly for the rotor flux.

Step 2.Compute the reference of the stator flux vectorψ∗
s.

Recall that the electromagnetic torqueTe produced by the
machine can be written asTe = kr|ψs| |ψr| sin(γ), where
kr is the rotor coupling factor, andγ is the angle between the
stator and the rotor flux vectors. When the machine is fully
magnetized, the magnitude of the reference flux vector is equal
to 1 pu. Then, for a given value of the rotor flux magnitude
and a given torque reference, the desired angle between the
stator and rotor flux vectors is

γ∗ = sin−1
( T ∗

e

kr|ψr|
)

. (4)

The reference flux vector is then obtained by integrating
the chosen nominal three-phase pulse pattern; the reference
angle∡ψr+γ

∗ constitutes the upper limit of the integral. The
resulting instantaneous reference flux vector has, in general, a
magnitude and angle that slightly differ from their respective
values on the unitary circle, Fig. 7. The vector diagram in this
figure provides a graphical summary of the derivation of the
reference flux vector.

Step 3.Compute the stator flux error, which is the difference
between the reference and the estimated stator flux vector

ψs,err = ψ
∗
s −ψs . (5)

It is evident that this error can be directly calculated—neither
the fundamental component nor the harmonic content of the
stator flux need to be estimated for this.

Step 4. This step comprises the actual pulse pattern con-
troller. The MP3C control problem can be formulated as an
optimization problem with a quadratic objective function and
linear constraints, a so called quadratic program (QP). Theob-
jective function penalizes both the uncorrected flux error (the
controlled variable) and the changes of the switching instants
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(the manipulated variable), using the weightq. Constraints
on the switching instants ensure that the correct sequence of
switching transitions is kept and that transitions are not moved
into the past. Specifically, the QP is formulated as

min
∆t

(
|ψs,err −ψs,corr(∆t)|2 + q∆tT∆t
︸ ︷︷ ︸

J(∆t)

)
(6a)

s. t. kTs ≤ ta1 ≤ ta2 ≤ . . . ≤ kTs + Tp (6b)

kTs ≤ tb1 ≤ tb2 ≤ . . . ≤ kTs + Tp (6c)

kTs ≤ tc1 ≤ tc2 ≤ . . . ≤ kTs + Tp . (6d)

Again,ψs,err is the stator flux error in stationary coordinates
(αβ), ψs,corr(∆t) is the correction of the stator flux, and
∆t = [∆ta1 ∆ta2 . . .∆tb1 . . .∆tc1 . . .]

T denotes the vector
of switching instant corrections. For phasea, for example,
the correction of thei-th transition time is given by∆tai =
tai − t∗ai, where t∗ai denotes the nominal switching instant
of the i-th transition∆uai. Again, the latter is defined as
∆uai = ua(t

∗
ai)−ua(t∗ai−dt) with dt being an infinitesimally

small time step.
The stator flux correction is obtained by rewriting (3)

ψs,corr(∆t) = −Vdc

2
P





∑

i∆uai∆tai∑

i ∆ubi∆tbi∑

i∆uci∆tci



 . (7)

The switching instants cannot be modified arbitrarily—they
are constrained by the current time-instantkTs as well as
by the neighboring switching transitions in the same phase.
Fig. 8 provides an example to illustrate this. The first switching
transition in phaseb, for example, is constrained to lie between
kTs and the nominal switching instant of the second transition
in phaseb. The second switching transition in phaseb can
only be delayed up to the nominal switching instant of the
third transition in the same phase. Note that the transitions in
a given phase are modified independently from those in the
other phases.

Step 5.Remove switching transitions from the QP that will
occur within the sampling interval. This can be accomplished
by updating a pointer to the look-up table that stores the
switching angles of the OPP and the respective three-phase
potential values.

Step 6.Derive the switching commands over the sampling
interval, i.e. the switching instants and the associated switch

-

-

-

ua

ub

uc

1

1

1

1

1

1

0

0

0

kTs kTs+Tp
time

t∗a1 t∗a2

t∗b1 t∗b2 t∗b3

t∗c1

Fig. 8: Model predictive pulse pattern control (MP3C) problem for a three-
phase three-level pulse pattern. Six switching transitions fall within the horizon
Tp, which is of fixed length. The lower and upper bounds for the nominal
switching instants are depicted by arrows

positions. The switching commands are sent to the gate units
of the semiconductor switches in the inverter.

To reiterate, even though a sequence of switch positions is
planned over a long prediction horizon, only the switching
sequence over the sampling interval is executed. The predic-
tions are recomputed at the next sampling interval using new
measurements; a shifted—and if necessary revised—sequence
of switch positions is derived. This is referred to as the
receding horizon policy, see Fig. 3, which provides feedback
and makes MP3C robust to the flux estimation errors and
non-idealities mentioned earlier. Longer horizons reducethe
controller sensitivity to flux estimation errors. As a result,
the steady-state current distortions tend to be lower, when
compared with an overly aggressive controller, i.e. a controller
that operates with a very short prediction horizon and does not
penalize the corrective action (q = 0).

E. Outer Control Loops

The inner MP3C control loop described above is augmented
by two outer control loops, as shown in Fig. 6. The first loop
regulates the torque by adjusting the reference angle between
the stator and the rotor flux vectors. The second loop regulates
the stator flux magnitude by adjusting the modulation index.
The slow stator flux controller uses information from the inner
loop of MP3C to adjust the modulation index—specifically, the
volt-second correction or the effective modulation index.

V. COMPUTATIONAL ASPECTS

A. Active Set Method to Solve the QP

The QP formulated in Step 4 can be solved efficiently
by adopting the so called active set method for quadratic
programming. This is a standard approach to solve QPs of
small to medium scale. The active set method is described in
detail in [13, Sect. 16.4].

We start by computing the unconstrained solution, i.e.
we minimize (6a), while neglecting the timing constraints
(6b)–(6d). We also recall that the step size of all switching
transitions is±1, i.e. |∆uai| = 1, and accordingly for phases
b and c. It is obvious that the resulting modifications of the
switching instants are the same per phase. We can thus define
δa = 1

3
Vdc
2 ∆tai for phasea, with δa denoting the scaled volt-

second modification for the phasea transitions. Further, let
na denote the number of switching transitions in phasea that
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6

occur within the horizon. The variables for phasesb andc are
defined accordingly.

The per-phase variables defined above can be aggregated to
the three-phase vectorsδ = [δa δb δc]

T andn = [na nb nc]
T .

As an example for the latter, refer to Fig. 8, which corresponds
to n = [2 3 1]T .

Introducing the constant̺= 1
2q/(

1
3
Vdc
2 )2, we can rewriteJ

in (6a) as

J(δ) = |ψs,err −ψs,corr(δ)|2 + 2̺
(
naδ

2
a + nbδ

2
b + ncδ

2
c

)
(8)

and (7) asψs,corr(δ) = −3PnT δ. Setting∇J(δ) to zero
yields the unconstrained minimum

δ = −M−1P−1ψs,err (9)

with

M =





2na + ̺ −nb −nc

−na 2nb + ̺ −nc

−na −nb 2nc + ̺



 . (10)

The expressionM−1P−1 can be derived algebraically and
does not need to be computed in real time.

The tailored active set method to solve the QP (6) involves
several iterations of the following three steps.

Step 1.Compute the number of switching transitionsn for
each phase that fall within the horizon.

Step 2. Neglect the timing constraints and compute the
unconstrained volt-second correctionsδ per phase. Convert
these into unconstrained switching instants, taking the sign of
the switching transition into account. For thei-th transition in
phasea, this impliestai = t∗ai+3 2

Vdc

δa
∆uai

. Phasesb andc are
defined accordingly.

Step 3. Impose the timing constraints (6b)–(6d) by deter-
mining the switching instants that violate one or more of the
constraints (the so-called active constraints). For the active
constraints, perform the following operations: limit the uncon-
strained switching instants by imposing the constraints. This
yields the final solution for these switching instants. Remove
these switching instants and their associated switching transi-
tions from the optimization problem and reducen accordingly.
Finally, compute the flux correction that results from these
modified switching instants and update the remaining (as yet
uncorrected) flux error accordingly.

Iterate over Steps 2 and 3 again until the solution remains
unchanged. In general, two iterations suffice.

This procedure is computationally simple. Most importantly,
the computational complexity is effectively independent of
the number of considered switching transitions and thus of
the length of the horizon. Specifically, the dimension of the
matrix M−1P−1 is always 3x2. Since the offline computed
OPP always has switching transitions of step-size one, the
above outlined active set method yields the same result as the
QP formulation (6). Small differences would occur, if some
transitions had step-sizes greater than one.

For the rest of the paper we will refer to the method outlined
in the present section asapproximate QPsolution. The method
of Step 4 of Sect. IV-D will simply be referred to asQP.

B. MP3C based on Deadbeat Control

Another alternative is to set the weightq in (6a) to zero.
As a result, the degree by which the switching instants are

modified is not penalized. The horizon is kept as short as
possible. Specifically, the horizon is redefined as the minimum
time interval starting at the current time instant such thatat
least two phases exhibit switching transitions. This leadsto
a pulse pattern controller with DB characteristic. The control
algorithm is computationally and conceptually very simple, as
summarized in the following.

Step 1. Determine the two phases that have the next
scheduled switching transitions. We refer to those as theactive
phases, which are always pairs, i.e.ab, bc or ac. This also
yields the length of the horizonTp, which is of variable length
for the DB controller. Determine all switching transitions
within the horizon. In Fig. 8, for example, phasesa and b
have the next switching transitions and are thus the active
phases. Their nominal switching instants aret∗b1, t∗b2 and t∗a1.
The horizon thus spans the time interval fromkTs to t∗a1.

Step 2.Translate the flux error fromαβ to abc, by mapping
it into the two active phases. The flux error of the third phase
is zero. For the example above, with the active phasesa and
b, the mapping is given byψs,abc,err = P

−1
ab ψs,err with

P−1
ab =






3
2

√
3
2

0
√
3

0 0




 . (11)

Step 3.Compute the required modification of the switching
instants inabc, given by∆treq = ψs,abc,err/(Vdc/2).

Step 4. Go through all switching transitions of the first
active phasex, with x ∈ {a, b, c}. For the i-th switching
transition in this phase with the nominal switching instant
t∗xi and the switching transition∆uxi, perform the following
operations:

• Compute in a DB fashion the desired modification
∆txi = ∆tx,req/(−∆uxi).

• Modify the switching instant totxi = t∗xi +∆txi.
• Constraintxi by imposing the respective constraints on

the switching instant.
• Update the phasex component of the required switching

instant modification, by replacing∆tx,req with ∆tx,req−
(txi − t∗xi)(−∆uxi).

Repeat the above procedure for the second active phase.
Note that, only in cases in which the constraints are not

active,txi−t∗xi equals the desired modification∆txi. Since the
DB controller aims at removing the stator flux error as quickly
as possible and since corrections in the switching instantsare
not penalized, the DB controller tends to be very fast and
aggressive. Yet, there is no guarantee that the flux error is
fully removed within the horizon, since the constraints on the
switching instants have to be respected.

Induction Voltage 3300 V rs 0.0108 pu
motor Current 356 A rr 0.0091 pu

Real power 1.587 MW xls 0.1493 pu
Apparent power 2.035 MVA xlr 0.1104 pu
Frequency 50 Hz xm 2.3489 pu
Rotational speed 596 rpm

Inverter Vdc 1.930 pu
xc 11.769 pu

TABLE I: Rated values (left) and parameters (right) of the drive

June 23, 2011 ECCE 2011



7

0 4 8 12 16 20

−1

−0.5

0

0.5

1

Time (ms)

(a) Stator currentsis

0 500 1000 1500 2000
0

0.02

0.04

0.06

0.08

Frequency (Hz)

(b) Stator current spectrum

0 4 8 12 16 20

−1

0

1

−1

0

1

−1

0

1

Time (ms)

(c) Switch positionsu

Fig. 9: Space vector modulation (SVM) at nominal speed and full torque with the carrier frequencyfc = 450Hz. The modulation index ism = 0.82. The
stator currents and the switch positions are shown versus the time-axis in ms, while the stator current spectrum is depicted versus the frequency axis in Hz.
All quantities are given in pu
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Fig. 10: Model predictive pulse pattern control (MP3C) with the pulse numberd = 5. The operating point, the switching frequency, the plots and their scaling
are the same as in Fig. 9 to facilitate a direct comparison

VI. PERFORMANCEEVALUATION

As a case study, consider a three-level NPC voltage source
inverter driving an induction machine with a constant mechan-
ical load, as shown in Fig. 1. A3.3 kV and 50Hz squirrel-
cage induction machine rated at2MVA with a total leakage
inductance of 0.25 pu is used as an example of a typical
medium-voltage induction machine. The dc-link voltage is
Vdc = 5.2 kV and the modulation index (as defined in [5])
is m = 0.82 for all cases. The detailed parameters of
the machine and the inverter are summarized in Table I.
The per unit system is established using the base quantities
VB =

√

2/3Vrat = 2694V, IB =
√
2Irat = 503.5A and

fB = frat = 50Hz.

A. Steady-State Operating Conditions

At nominal speed and rated torque, closed-loop simulations
were run to evaluate the performance of MP3C under steady-
state operating conditions. The key performance criteria are
the harmonic distortions of the current and torque for a
given switching frequency. The simulated MP3C is based
on the DB controller and OPPs with various pulse numbers
calculated offline according to Sect. III-A. MP3C is compared
with two commonly used modulation methods—carrier-based
pulse width modulation (PWM) and space vector modulation
(SVM). Specifically, a three-level regular sampled PWM is
implemented with two in phase triangular carriers, so-called
phase disposition (PD). It is generally accepted that for multi-
level inverters, carrier-based PWM with PD results in the low-

Control Control fsw Is,THD Te,THD Is,THD Te,THD

scheme setting [Hz] [%] [%] [%] [%]

PWM fc = 250Hz 150 16.1 11.0 100 100
SVM fc = 250Hz 150 15.5 9.83 96.8 89.6
MP3C d = 3 150 7.36 6.62 45.9 60.3

PWM fc = 450Hz 250 7.94 5.79 100 100
SVM fc = 450Hz 250 7.71 5.35 97.1 92.4
MP3C d = 5 250 4.13 3.41 52.0 58.9

PWM fc = 750Hz 400 4.68 3.41 100 100
SVM fc = 750Hz 400 4.52 3.06 96.6 89.7
MP3C d = 8 400 3.63 2.88 77.6 84.5

TABLE II: Comparison of MP3C with PWM and SVM in terms of the
switching frequencyfsw, the current THDIs,THD and the torque THDTe,THD.
The center section shows absolute values, while the values in the right section
are relative, using PWM as a baseline. The pulse number is given byd and
the carrier frequency byfc. In all cases the modulation index ism = 0.82

est harmonic distortion. In accordance with common practise,
the reference signals are generated by adding a one sixth third
harmonic to the modulating reference signals to boost the
differential-mode voltage. The SVM is obtained by adopting
the approach proposed in [14]: A common mode voltage,
which is of the min/max type plus a modulus operation, is
added to the reference voltage.

At steady-state, all three versions of MP3C (QP, approxi-
mate QP and DB) yield the same performance results shown
in Table II for the DB version. They effectively reproduce
the OPP performance, thus generating the minimum current
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Fig. 11: Model predictive pulse pattern control (MP3C) at 50% speed with steps in the torque reference. The torqueand the switch positions are shown versus
the time-axis in ms, while the stator currents are depicted in the stationary orthogonal coordinates. All quantities are given in pu

and torque THDs. This method is conceptually applicable to
the whole speed range. However, for higher pulse numbers,
the difference between SVM and OPPs becomes smaller and
smaller. Thus for low-speed operation, the advantage of OPPs
over SVM is minor and the memory required to hold the OPP
increases, making SVM the preferred choice. This is clearly
shown in Table II in that the MP3C values come closer to the
PWM results as the switching frequency increases—although
MP3C is still considerably better than both PWM methods
over the range displayed. It can also be noted that the THD
performances for the two PWM methods is quite similar.

The current waveform and spectrum along with the phase
leg switch positions are shown for SVM and MP3C DB
modulation respectively in Figs. 9 and 10. These figures
refer to the fifth and sixth row in the table, i.e. the middle
switching frequency considered in the comparison. From the
current waveforms it is readily apparent that MP3C produces
a much lower current ripple. Correspondingly, the harmonic
components of the MP3C current spectrum are much reduced,
particularly regarding the harmonics aroundfc and the 17th
harmonic.

Notable differences between the QP and the DB version
exist in the presence of observer noise. The details will be
described in a follow-up paper.

B. Torque Steps

As shown in Fig. 11, at the time-instants of 10 ms and 50 ms
steps in the torque reference from 1 pu to 0 pu and back to
1 pu were applied using MP3C with DB control. The settling
time is in the range of a few ms and thus similar to those
for standard DB and hysteresis control schemes. The MP3C
methods based on QP and the approximate solution of the
QP (using an active set method), respectively, lead to slower
torque response times. Specifically, depending on the weight
q and the horizon length, these response times are slower by
a factor of two to three.

VII. C ONCLUSIONS

This paper proposed a new model predictive controller
based on optimized pulse patterns that resolves the classic
contradiction inherent to drive control—very fast controldur-
ing transients on the one hand, and optimal performance at
steady-state operating conditions on the other, i.e. minimal
current THD for a given switching frequency. The former

is typically achieved only by deadbeat control schemes and
direct torque control, while the latter is in the realm of pre-
calculated optimized pulse patterns. The proposed controller,
MP3C, achieves both objectives, by adopting the principles
of constrained optimal control and receding horizon policy.
This method inherently provides robustness, while respecting
the optimal volt-second balance of the OPPs under quasi
steady-state and dynamic conditions. The result are very fast
current and torque responses during transients and very low
harmonic distortion levels per switching frequency at steady-
state operating conditions.
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