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Abstract—Model Predictive Direct Torque Control (MPDTC)
is a recent computational control methodology that combines
the merits of Model Predictive Control (MPC) with the ones
of Direct Torque Control (DTC). Specifically, with respect to
standard DTC, the converter’s switching frequency and/or losses
are considerably reduced, while at the same time the Total
Harmonic Distortion (THD) levels of the phase currents and
the torque are improved. Moreover, DTC’s favorable dynamic
and robustness properties are preserved. This paper presentsan
MPDTC scheme for a permanent magnet synchronous motor
that achieves long prediction horizons in the range of up to
150 time-steps through the use of extrapolation and bounds. A
discrete-time internal controller model of the drive system is
derived from the physical equations. Simulation results for a
three-level voltage source inverter indicate that such an MPDTC
scheme, compared to an industry standard controller, is capable
of reducing the switching losses and the switching frequency by
up to 50%, and the torque THD by 25%, while leaving the
current THD unchanged.

Index Terms—Model predictive control, direct torque control,
permanent magnet synchronous machine, medium-voltage drive

I. I NTRODUCTION

One of the classical methods for controlling electrical
motors is Direct Torque Control (DTC), initially introduced
in [1] for induction motors [2], [3] and successively also for
other configurations [4] such as synchronous machines [5],
especially in the case of the permanent magnet type [6], [7].
The key notion behind DTC is to directly steer the stator flux
vector by applying the appropriate voltage vector to the stator
windings. This is done by using a pre-designed switching
table to directly update the inverter’s discrete switch positions
whenever the variables to be controlled, the electromagnetic
torque and the stator flux, exceed the hysteresis bounds around
their references. The switching table is derived on the basis
of the desired performance specifications on the controlled
variables, which, in the case of a three-level inverter, also
include the balancing of the inverter’s neutral point potential
around zero.

The success of DTC is closely associated with the per-
formance advantages it brings with respect to the rapid and
precise dynamic torque response. Furthermore, since the look-
up table directly sets the switch positions of the semiconductor
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components in the inverter, a pulse width or space vector
modulator is not required. This however also implies a variable
switching frequency, which is intrinsically connected with the
width of the hysteresis bounds being used – more stringent
bounds correspond to a higher switching frequency and vice
versa. It is usually desirable to minimize the average switching
frequency of the inverter, since this represents a rough measure
of its switching losses and therefore of its energetic and
economic cost, but in general DTC in itself cannot directly
regulate or minimize the switching frequency and it might
furthermore feature a relatively significant ripple on the current
and torque.

To obviate these shortcomings different approaches have
been reported in the literature, focusing mostly on drives with
induction motors, as these represent the electrical motorsmost
commonly employed in industrial applications [8], [9]. These
approaches seek to ameliorate the design procedure of the
switching table by improving the achievable trade-off between
the switching frequency and the torque and flux ripple, by
reducing the average inverter switching frequency for a given
torque and flux ripple. The aforementioned methods however,
although apt at being applied for two-level inverters, are not
easily extendable to multi-level inverters [10].

The recent past has witnessed the formulation of a number
of Model Predictive Control (MPC) based schemes for motor
drives, partly as originally outlined in [11] and as presented
for example in [12], where the latter actually refers to a syn-
chronous motor setup. More specifically for permanent magnet
(PM) motors MPC methods have also been presented featuring
both modulation and DTC approaches. Examples of the former
include [13], where the resulting continuous variable problem
is tackled via an explicit solution approach, and [14], where
a predictive scheme for operation in overmodulation is used
to account and compensate for current distortions. Among the
latter one has [15], [16] where a current control scheme was
developed and experimentally evaluated against a classical
DTC approach, and although the resulting comparison is
favorable the issue of switching frequency reduction is not
directly addressed.

It was specifically in relation to switching frequency is-
sues that a novel model predictive control approach to the
DTC problem was developed in [17], [18] for the three-
phase induction motor, with the aim of regulating the system
values within their imposed bounds whilst minimizing the
resulting inverter switching frequency. The Model Predictive
DTC (MPDTC) method featured therein is independent of the
drive’s physical parameters and structural characteristics, so
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Fig. 1: Equivalent representation of a three-phase three-level voltage source
inverter driving a permanent magnet synchronous motor

that the design procedure can be readily extended to other
topologies. The initial MPDTC algorithm is available in two
forms with switching horizons of one or two steps [17], [18].
Linear and quadratic extrapolation is used to achieve predic-
tion horizons in the range of a couple of dozen steps. MPDTC
was generalized in [19] allowing for an extended switching
horizon, which is composed of multiple hinges (groups of
switch transitions) linked by several extrapolation or extension
segments. Moreover, the switching losses can be captured in
the controller’s objective function and thus directly minimized.
The benefit of these two concepts is a further decrease in
the switching losses. MPDTC’s associated implementation
complexity is within reach of existing controller hardware,
as the experimental results presented in [20] confirm. It is
specifically in view of these advantageous features in terms
of performance, flexibility and technological viability that the
same MPC approach has been investigated for and applied to
the PM synchronous motor drive, as featured herein.

The present paper is structured as follows: Section II de-
scribes the physical drive system and the employed formalism,
while the associated control problem and MPC concept are
briefly resumed in Sections III-A and III-B. Section III-C
presents the control model employed for the prediction of the
drive system’s behavior, and Section III-D presents the gen-
eralized MPDTC concept with its combination of switching
hinges and extrapolation segments. In Section IV simulations
for steady state operation are presented and compared with
those of an industry standard controller, and lastly conclusions
are drawn in Section V.

II. D RIVE SYSTEM

All variables and parameters in this paper are normalized
using the per unit (pu) system. Accordingly, we will use the
normalized time scalet with one time unit corresponding
to 1/ωb seconds, whereωb is the base angular velocity.
Additionally, we will useξ(t), t ∈ R, to denote continuous-
time variables, andξ(k), k ∈ N, to denote discrete-time
variables with the sampling intervalTs = 25µs. Often, when
the dependency ofξ is apparent, we will simply writeξ to
simplify the exposition.

A. The Three-Level Voltage Source Inverter

A schematic depiction of a three-phase three-level voltage
source inverter connected to a PM synchronous motor is
presented in Fig. 1. At each phase, the inverter can yield the

three distinct voltage levels{Vdc
2 , 0,−

Vdc
2 }, whereVdc denotes

the total dc-link voltage. The inverter’s phase switch positions
can be described through the integer variablesua, ub, uc

∈ {1, 0,−1}, where{1, 0,−1} respectively correspond to the
voltages{Vdc

2 , 0,−
Vdc
2 }. The vector of inverter switch positions

can be written as

uabc = [ua ub uc]
T ∈ {−1, 0, 1}3 . (1)

For a three-level voltage source inverter, the neutral point
potentialυn deserves particular attention. According to [17]
the continuous-time behavior of the neutral point potential is
determined by

dυn

dt
= −

1

2xc

(

(1− |ua|)isa + (1− |ub|)isb + (1− |uc|)isc

)

,

(2)
whereisa, isb, isc are the phase stator currents andxc is the
value of one of the two identical capacitors constituting the
dc-link. By considering thatisa + isb + isc = 0 it can be easily
derived that

dυn

dt
=

1

2xc

(|uabc|
T is,abc) (3)

where |uabc| = [|ua||ub||uc|]
T denotes the componentwise

absolute value of the inverter switch positions andis,abc =
[isa isb isc]

T .
Additional constraints on the admissible switch transitions

appear in conjunction with the design of the inverter, namely
the installation of only onedi/dt snubber in the upper and
the lower inverter half, respectively. Specifically, each phase
leg can switch only by at most one step, at most two phase
legs can switch at the same time and if so, switching needs to
occur in the opposite halves of the inverter. For example, from
[1 1 1]T , switching is only admissible to[0 1 1]T , [1 0 1]T or
[1 1 0]T (and not to any of the other 23 switch positions).

Switching losses arise in the inverter when turning the
semiconductors on or off and commutating the phase current.
These losses depend on the applied voltage, the commutated
current and the semiconductor characteristics. Considering
Integrated Gate Commutated Thyristors (IGCT), with the GCT
being the semiconductor switch, the switch-on and switch-
off losses can be well approximated to be linear in the dc-
link voltage and the phase current. For diodes, the reverse
recovery losses are again linear in the voltage, but nonlinear
in the commutated current. As shown in [19], [21], for a given
inverter topology, the switching losses can be derived as a
function of the switching transition, the commutated phase
current and its polarity.

B. The dq0 Reference Frame

The dynamical equations of the PM synchronous motor are
conveniently expressed in an orthogonal coordinate system
rotating synchronously with the machine’s electrical field.
Specifically, a dq0 reference frame is used. The physical
three-phaseabc valuesξabc = [ξa ξb ξc]

T are translated to
ξdq0 = [ξd ξq ξ0]

T in the dq0 frame through

ξdq0 = P (ϕr) ξabc , (4)
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whereϕr denotes the angle between thea-axis of the three-
phase system and thed-axis of the reference frame. By align-
ing thed-axis with the motor’s rotor flux,ϕr also corresponds
to the rotor’s angular position. The transformation matrixis
given by

P (ϕr) =
2

3







cos(ϕr) cos(ϕr −
2π
3 ) cos(ϕr + 2π

3 )

− sin(ϕr) − sin(ϕr −
2π
3 ) − sin(ϕr + 2π

3 )
1
2

1
2

1
2






.

(5)
The reference frame rotates with the angular speedωfr = ωr =
dϕr

dt
, whereωr is the rotor’s angular speed.

When modelling electrical machines, the 0-component of
ξdq0 is typically not required. For this, we introduce the
transformation matrixP̃ (ϕ) that features the first two rows
of P (ϕ) only and yields

ξdq = [ξd ξq]
T = P̃ (ϕr)ξabc . (6)

C. The Permanent Magnet Synchronous Motor

A permanent magnet is mounted on the rotor of the syn-
chronous machine that yields the associated constant magnetic
flux linkage per second

ψr,dq =

[

ψrd

ψrq

]

=

[

ψPM

0

]

. (7)

The stator flux linkage per second is given by

ψs,dq = Xs is,dq + ψr,dq , (8)

with the stator self reactance

Xs =

[

xls + xmd 0

0 xls + xmq

]

. (9)

In here,xls denotes the stator leakage reactance, andxmd and
xmq are the direct and quadrature axis magnetizing reactances,
respectively. As well asψr,dq, the stator flux linkageψs,dq and
the stator currentis,dq are vectors with correspondingd- and
q-components.

The voltage equation indq is

vs,dq = rs is,dq +
d

dt
ψs,dq + ωr

[

0 −1

1 0

]

ψs,dq , (10)

wherevs,dq is the stator voltage vector indq, andrs the stator
resistance. The former is the inverter voltage applied to the
stator represented in thedq reference frame.

vs,dq =

[

vsd

vsq

]

=
Vdc

2
P̃ (ϕr)uabc (11)

The electromagnetic torque is given by

Te = ψsdisq − ψsqisd , (12)

or equivalently by

Te =
1

xls + xmd

(xmd − xmq

xls + xmq

ψsd + ψrd

)

ψsq , (13)

where the latter equation can be derived by solving (8) foris,dq

and substituting it in (12). Note that due to the saliency of the
machine, the torque is also a function of thed-component of
the stator flux, albeit to a small degree only. The magnitude
of the stator flux is obtained through

Ψs =
√

ψ2
sd + ψ2

sq . (14)

Notice that both expressions are effectively nonlinear functions
of the flux vector components. The voltage equation (10)
along with (7)-(9) and (11) represent a standard dynamical
formulation of the synchronous motor, and alongside the
inverter equation (3), it constitutes the starting point ofthe
internal controller model to be developed in Section III-C.

The motor dynamics can be distinguished into two groups
with regards to their time constants. The mechanical part, i.e.
the rotational speed dynamic, which is not shown here, is slow
as it evolves within a lapse of a few seconds, whereas the
stator flux exhibits considerably faster dynamics, which can
be manoeuvered by the applied inverter voltage in a matter of
several microseconds.

III. C ONTROL SCHEME

A. Control Problem and Objectives

The control problem includes objectives regarding both the
motor and the inverter. First and foremost for the motor, the
electromechanical torqueTe delivered at the shaft must be
kept close to its referenceTe,ref by maintaining it between the
lower and upper limit valuesTe,min and Te,max. The torque
reference is either directly set by the user or by an external
speed control loop. Secondly, in order to avert motor saturation
or demagnetization, the magnitude of the stator fluxΨs must
be kept between the given boundsΨs,min andΨs,max. The main
control objective relating to the inverter operation consists
in minimizing the average switching frequency (and/or the
switching losses) on the inverter legs, and additionally keeping
the inverter’s neutral point potentialυn within the limitsυn,min

andυn,max around zero.

B. Model Predictive Control

The algorithmic concept of Model Predictive DTC
(MPDTC) is based on the principles of constrained optimal
control, specifically Model Predictive Control (MPC). MPC
has been traditionally and successfully employed in a variety
of industrial applications and has more recently been the object
of study and investigation in the fields of power electronicsand
drives. This is directly related to the fact that it is a systematic
control method allowing one to deal with complex, multi-
variable systems subject to constraints by directly formulating
a discrete-time control model of the plant. The desired control
objectives are replicated in an appropriately selected cost
function mirroring the order of importance of the imposed
objectives. At each sampling instant the control action is
obtained by minimizing the cost function over a prediction
horizon subject to the equations and constraints of the model.
The first control input in the optimal input sequence is then
applied to the system and the procedure is repeated at the

July 2, 2010 ECCE 2010



4

successive sampling instant. Further details about MPC can
be found in [22].

C. Internal Controller Model

For the formulation of the optimal control problem, a
discrete-time model of the drive system is needed to serve as
internal controller model. The sampling periodTs is employed,
with the discrete-time stepk corresponding to the time-instant
kTs. SinceTs is typically 25µs and the prediction horizon is
in the range of a few 100 steps, or equivalently a few ms, the
rotor speed within the prediction interval can be assumed tobe
constant. Therefore, a dynamical equation describing the rotor
speed evolution within the prediction interval is not required,
and the rotor speed can be considered to be a parameter. To
be precise, the rotor speed is a time-varying parameter in the
controller model, implying that the model equations need to
be updated as the rotor speed varies.

Solving (8) for is,dq and substituting it into the motor’s
voltage equation (11) yields

d

dt
ψs,dq(t) = (Fr −Fm)ψs,dq(t)+Fm ψr,dq + vs,dq(t) (15)

with the matrices

Fm =

[

rs

xls+xmd
0

0 rs

xls+xmq

]

, Fr =

[

0 ωr

−ωr 0

]

. (16)

Due to the rotation of thedq reference frame, the stator voltage
expressed in thedq frame, i.e. vs,dq, is time-varying even
whenuabc remains constant. This is also the case during the
sampling interval and will complicate the derivation of the
discrete-time model.

The discrete-time linear motor model is obtained by inte-
grating (15) fromt = kTs to t = (k + 1)Ts which yields

ψs,dq((k + 1)Ts) = e(Fr−Fm)Ts ψs,dq(kTs)

+ Fm

∫ Ts

0

e(Fr−Fm)(Ts−τ) dτ ψr,dq

+
Vdc

2

∫ Ts

0

e(Fr−Fm)(Ts−τ) P̃ (ϕr(kTs + τ))uabc(kTs + τ) dτ .

(17)

In the following, we focus on the third expression on the right-
hand side of (17), which can be simplified using the following
three relations. Firstly, as the componentwise product between
Fm andFr is zero, one can write

e(Fr−Fm)(Ts−τ) = eFr(Ts−τ)eFm(τ−Ts) . (18)

Secondly, sinceϕr(kTs + τ) = ϕr(k) + ωrτ , the relation

e−Frτ P̃ (ϕr(kTs + τ)) = P̃ (ϕr(kTs)) (19)

can be shown to hold. Moreover, it is straightforward to derive

eFrTs P̃ (ϕr(kTs)) = P̃ (ϕr(kTs) + ωrTs) . (20)

Using (18), (19) and (20), and recalling that the voltage vector
applied to the motor terminals remains constant within one

sampling interval we can rewrite the third expression in (17)
as

Vdc

2

∫ Ts

0

eFm(τ−Ts) dτ P̃ (ϕr(kTs) + ωrTs)uabc(kTs) . (21)

In a last step, the integrals in (17) and (21) are solved to
obtain the discrete-time motor model in the compact form

ψs,dq(k + 1) = Aψs,dq(k) +B1 ψr,dq

+
Vdc

2
B2 P̃ (ϕr(k) + ωrTs)uabc(k) ,

(22)

where we have usedk rather thankTs to denote the sampling
instants, and introduced the matrices

A = e(Fr−Fm)Ts (23a)

B1 = −Fm(Fr − Fm)−1(I2 −A) (23b)

B2 = F−1
m (I2 − e−FmTs) (23c)

with I2 being the two-dimensional identity matrix.
The evolution of the angular position can be trivially cap-

tured via
ϕr(k + 1) = ϕr(k) + ωrTs . (24)

For the neutral point a less precise discretization method
suffices – starting from (3) and using a forward Euler approach
one obtains

υn(k + 1) = υn(k) +
1

2xc

(|uabc(k)|
T is,abc(k))Ts , (25)

where the stator currentsis,abc can be expressed as a function
of the motor fluxes and the angular position through

is,abc(k) = P̃ (ϕr(k))
−1X−1

s (ψs,dq(k) − ψr,dq) . (26)

In this model the stator currents are only needed to compute
the evolution of the neutral point potential using (25) and
to derive the predicted switching losses according to Sec-
tion II-A. Since accuracy is for both not that critical one might
assume the stator currents to be constant within the prediction
horizon so as to reduce the computational burden associated
with the internal controller model.

Recapitulating the above, the internal controller model has
the state vector

x(k) = [ψsd(k) ψsq(k) ϕr(k) υn(k)]T (27)

and the output vector

y(k) = [Te(k) Ψs(k) υn(k)]T . (28)

Using (13) and (14) the output vectory(k) can be directly
written as a nonlinear function ofx(k).

D. Model Predictive Direct Torque Control

Recall that the MPDTC objective is to minimize the switch-
ing frequency (or the switching losses) while keeping the
controlled variablesy, i.e. the torque, stator flux magnitude
and neutral point potential, within their given bounds. The
combination of a short sampling interval of usually25µs
and a switching frequency that is typically in the range
of a few hundred Hertz for medium-voltage applications,

July 2, 2010 ECCE 2010



5

requires very long prediction horizons of hundreds of time-
steps to capture the evolution of the switching frequency in
the controller’s objective function. To avoid the associated
explosion in computational complexity due to the model’s
switching characteristics, a short switching horizon is used
in connection with a long prediction horizon.

1) Original MPDTC Algorithm: In the original MPDTC
formulation described in [17], [18] and shown in Fig. 2, the
switch positionu(k), i.e. the control input, is determined
at each sampling instantkTs as follows. Starting from the
previously applied switch positionu(k − 1), the admissible
inverter switching sequences are enumerated over a short
switching horizon of lengthNs. The switching sequences can
be considered as a sequence of control actions over the control
horizon. By applying each switching sequence to the discrete-
time internal controller model a corresponding predicted out-
put trajectory[y(k + 1), . . . , y(k +Ns)] is obtained.

Next, the so calledcandidate switching sequences are
determined. These are switching sequences that yield output
trajectories that are either feasible at the end of the switch-
ing horizon (the output variables lie within their respective
bounds) or, if they are outside their bounds, progressively
reduce the degree of the bound’s violation. To achieve a
long prediction horizonNp the output trajectories referring to
candidate trajectories are extrapolated in time and the number
of time-steps is determined for which the output variables are
kept within their bounds.

Linear extrapolation is computationally very cheap and it is
this crucial aspect that renders the overall approach viable even
if the switching horizonNs is short. The cost associated with
each switching sequence is computed by dividing the total
number of switch transitions in the sequence by the length
(number of time-steps) of the associated extrapolated trajec-
tory. This yields a predicted short-term switching frequency.

An input with low cost, that is an input which requires
few switch transitions and keeps the outputs feasible for
a long interval, is intuitively a good choice in terms of
both the switching frequency and the resulting ripple, so
that minimizing this value is the criterion through which the
optimal switching sequence is chosen. Out of this sequence,
only the first element, the switch positionu(k), is applied to
the inverter.

2) Generalized MPDTC Algorithm: As introduced in [19]
the above formulation can be generalized by considering
longer switching horizons with multiple switching instants and
extrapolation segments. Moreover, the switching losses can be
included in the controller model and directly minimized rather
than indirectly via the switching frequency, as also proposed
in [21].

Starting at the current time-stepk, the generalized MPDTC
algorithm iteratively explores the tree of feasible switching
sequences forward in time. At each intermediate step, all
switching sequences must remain candidate sequences – oth-
erwise they are being discarded. The traversing through the
tree is controlled by the so calledswitching horizon composed
of the elements ’S’ and ’E’, which stand for ’switch’ and
’extrapolate’ (or more generally ’extend’), respectively. The

Speed
controller

MPDTC

M

Encoder
(optional)

Minimization of 
cost function

Prediction of 
trajectories

Dc-link

Observer

=
~~

ωref
Te,ref

Ψs,ref

ψs

u

is

ωr

Fig. 2: Schematic of model predictive direct torque control (MPDTC) for a
voltage source inverter driving a permanent magnet synchronous machine

switching horizon can be considered as an alternative to a
horizon of fixed length. Note that for MPDTC, the resulting
prediction horizonNp is of variable length. As an example
for a switching horizon, consider ’SSESE’, which stands for
switching at time-stepsk andk+1 and subsequently extending
the trajectories until one or more output trajectory ceasesto be
feasible and/or pointing in the proper direction. Assume this
happens at time-stepk + ℓ thus triggering the third switching
event that is followed by another extension step. We use the
task ’e’ to add an optional extension leg to the switching
horizon.

Using ’eSSESE’ as an example, one candidate switching
sequence is depicted in Fig. 3 along with its corresponding
output trajectories. Starting at the present time-stepk, after an
(optional) extrapolation step ’e’, the phasesb andc switch at
time-stepk+37, while at stepk+38 phasea switches. These
transitions constitute the first two switching events ’SS’ in the
horizon. Note that these switching transitions cannot occur
at the same time due to the snubber constraint. At time-step
k + 49 the phasesb and c switch again followed by another
extrapolation segment.

At time-stepk, the generalized MPDTC algorithm computes
u(k) according to the following procedure [19].

1) Initialize the root node with the current state vector
x(k), the last switch positionu(k−1) and the switching
horizon. Push the root node onto the stack.

2a) Take the top node with a non-empty switching horizon
from the stack.

2b) Read out the first element. For ’S’, branch on all
admissible switch transitions according to Section II-A.
For ’E’, extend the trajectories either by extrapolation as
detailed in [17] or by using the internal controller model
derived in Section III-C.

2c) Keep only the switching sequences that are candidates.
2d) Push these sequences onto the stack.
2e) Stop if there are no more nodes on the stack with

non-empty switching horizons. The result of this are
the predicted (candidate) switching sequencesU i(k) =
[ui(k), . . . , ui(k + ni − 1)] of length ni, where i ∈ I
andI is an index set.

3) Compute for each (candidate) sequencei ∈ I the associ-
ated cost. If the switching frequency is to be minimized,
considerci = si/ni, which approximates the average

July 2, 2010 ECCE 2010



6

 

 

k-50 k k+50 k+100 k+150 k+200 k+250

Te,max

Te,min

(a) Predicted trajectory of the electromagnetic torque

k-50 k k+50 k+100 k+150 k+200 k+250

Ψs,max

Ψs,min

(b) Predicted trajectory of the stator flux magnitude

k-50 k k+50 k+100 k+150 k+200 k+250

υn,max

υn,min

(c) Predicted trajectory of the neutral point potential

                  k-50 k k+50 k+100 k+150 k+200 k+250

1

1

1

0

0

0

−1

−1

−1
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Fig. 3: Candidate switching sequence with the associated torque, stator flux
and neutral point trajectories between their respective upper and lower bounds.
The time-axis is given by the sampling instants with the sampling interval
Ts = 25µs. The switching horizon ’eSSESE’ leads here to a prediction
horizon ofNp = 213 time-steps or 5.325 ms.

switching frequency, wheresi =
∑k+ni−1

ℓ=k ||ui(ℓ) −
ui(ℓ− 1)||1 is the total number of switch transitions in
the switching sequenceU i(k). Conversely, if the switch-
ing losses are targeted, the cost functionci = Ei/ni is
used, whereEi is the sum of the switching (energy)
losses according to Section II-A.

4) Choose the switching sequenceU∗ = U i(k) with the
minimal cost, wherei = arg mini∈I ci.

5) Apply (only) the first switch positionu(k) = u∗ of this
sequence and execute the above procedure again at the
next time-stepk + 1.

PM Synchronous Motor
Rated voltage 3000 V xmd 0.550 pu
Rated current 328 A xmq 0.481 pu
Apparent power 1.704 MVA xls 0.275 pu
Rated frequency 16 Hz rs 0.030 pu
Rated speed 80 rpm ψrd 1.110 pu

Inverter
Dc-link voltage 4294 V Vdc 1.753 pu

xc 3.716 pu

TABLE I: Rated values (left) and parameters (right) of the permanent magnet
synchronous motor and inverter

Note that the prediction horizon induced by the switching
horizon is given byNp = maxi∈I(ni).

IV. PERFORMANCEEVALUATION

In the following, for a PM synchronous machine whose
ratings and parameters are summarized in Table I, MPDTC’s
performance at steady-state is compared with the one of stan-
dard DTC. The comparison is done in terms of the switching
lossesPsw, the switching frequencyfsw, and the current and
torque THDsIs,THD andTe,THD, respectively. Standard DTC is
used as the baseline. The operating point is at 80% speed and
100% torque. The width of the bounds, given by the upper
minus the lower bound, is always 5% for the neutral point
potential.

Three comparisons between DTC and MPDTC are shown
hereafter. The first comparison is based on using effectively the
same bounds on the torque, stator flux and neutral point, the
second one focuses on the same current THD, while the third
comparison maintains the same switching losses. The related
results are shown in Tables II, III and IV, respectively. In these
comparisons, the impact of the length of the switching horizon
with a varying number of switching hinges and extrapolation
blocks is demonstrated. Moreover, the controller’s objective
is altered between minimizing the switching frequency and
the losses. The resulting average prediction horizons are also
shown.

In the first comparison, MPDTC’s torque and flux bounds
were slighted widened to account for DTC’s bound violations,
namely a bound width of 6% was used for the torque, 3.3% for
the stator flux and 5% for the neutral point potential. Table II
illustrates that there is a clear benefit in directly reducing
either the switching losses or the switching frequency, with
a maximum decrease of the targeted quantities of about 50%
when using long horizons. The current distortion is increased
in some cases, but more importantly the torque THD is
reduced.

Figs. 4 and 5 depict system values during steady-state
operation at 80% speed and 100% torque for the cases
corresponding to the first and last rows of Table II, i.e. standard
DTC vs. MPDTC with ’eSSESESE’ employing switching
frequency minimization. Even though the bounds were slightly
widened in MPDTC to account for the intermittent violations
in DTC, the obtained torque and flux ripples are smaller. Most
importantly, the switching frequency is more than halved when
compared to DTC.

July 2, 2010 ECCE 2010



7

0   20   40   60   80
0.95

    

0.97

    

0.99

    

1.01

    

1.03

    

1.05

Time (ms)

(a) Electromagnetic torque

0   20   40   60   80
0.95

0.96

0.97

0.98

0.99

Time (ms)

(b) Stator flux magnitude

0   20   40   60   80

−1

0 

1 

−1

0 

1 

−1

0 

1 

Time (ms)

(c) Switch positions with stator currents

Fig. 4: Standard DTC corresponding to the first rows in TablesII, III and IV. All signals are given in pu.
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Fig. 5: MPDTC with the switching horizon ’eSSESESE’ minimizing the switching frequency, and corresponding to the last rowin Table II. The operating
point and the scaling are the same as in Fig. 4 to facilitate a direct comparison. The torque and flux bounds were slighted widened to account for DTC’s
violations of the bounds. All signals are given in pu.

In the second comparison, the torque and flux bounds are
modified in MPDTC so as to achieve similar current distortion
levels as in DTC. As displayed in Table III the switching
frequency and losses are again improved by up to 50%, both
in the case where they are directly minimized and also when
the controller tries to curb the switching frequency. Notice that
the reverse does not necessarily hold, at least not to the same
extent, as it is possible to reduce the switching losses despite
switching relatively often by switching predominantly when
the phase currents and thus the losses are low.

This fact can be also observed from the results of the third
comparison, in which the switching losses are kept constant,
and the torque and flux bounds are adjusted accordingly for
MPDTC. Specifically, in the second column of Table IV, for
the same losses the switching frequency is clearly higher when

it is not explicitly minimized. Of greater interest, however,
is the fact that the current and torque distortion levels are
distinctly lower than those of standard DTC. The current THD
is reduced by one third, while the torque THD is reduced
by two thirds and more, when keeping the switching losses
unchanged.

The performance in terms of the switching losses and
the switching frequency generally improves for the overall
simulations as the number of switching instants and extrap-
olation segments is increased in the horizon. Specifically,
MPDTC with the short switching horizon ’eSSE’ leads to a
considerable degree of performance improvement when com-
pared to standard DTC. Increasing the switching horizon from
’eSSE’ to the long horizon ’eSSESESE’ effectively doubles
this performance improvement.
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Control Switching Pred. Obj. Psw fsw Is,THD Te,THD

scheme horizon horizon [%] [%] [%] [%]

DTC – – – 100 100 100 100
MPDTC eSSE 40.5 Psw 72.0 95.2 128 90.0
MPDTC eSSESE 99.1 Psw 52.6 69.9 119 88.1
MPDTC eSSESESE 163 Psw 46.6 63.7 116 85.1
MPDTC eSSE 35.4 fsw 103 95.2 117 84.1
MPDTC eSSESE 103 fsw 59.5 65.8 109 85.1
MPDTC eSSESESE 167 fsw 55.2 51.2 103 79.1

TABLE II: Performance comparison of MPDTC with standard DTC when
using similar bounds. For MPDTC the switching horizons and the objective
function (minimization of the switching frequency or the switching losses,
respectively) are varied. DTC serves as the 100% baseline.

Control Switching Pred. Obj. Psw fsw Is,THD Te,THD

scheme horizon horizon [%] [%] [%] [%]

DTC – – – 100 100 100 100
MPDTC eSSE 34.3 Psw 82.8 116 95.7 59.7
MPDTC eSSESE 78.7 Psw 67.7 86.3 102 65.7
MPDTC eSSESESE 150 Psw 48.3 63.0 96.1 69.7
MPDTC eSSE 39.8 fsw 80.2 78.8 94.8 62.7
MPDTC eSSESE 83.9 fsw 71.1 68.5 93.6 63.7
MPDTC eSSESESE 161 fsw 53.9 51.2 102 75.1

TABLE III: Performance comparison of MPDTC with standard DTC for a
similar current distortion level

V. CONCLUSIONS

MPC offers an attractive and flexible way of dealing with
complex control problems and has manifested itself in recent
and promising applications in the area of power electronics
and drives. This paper presented a model predictive direct
torque control method for PM synchronous machines. As the
presented numerical results for steady-state operation indicate
long horizons lead to particularly promising performance
results. Specifically, for a given current distortion levelthe
switching frequency and the switching losses can be reduced
by about 50%, when compared to industrial DTC. Vice versa,
the switching frequency and losses are reduced by 40% for the
same current THD. The torque THD can be reduced by up to
70% with respect to DTC. The dynamic behavior of MPDTC
during transients such as torque steps is effectively the same
as in DTC, as previous results in [20] indicate.

Future work will focus on corroborating the performed
simulations through experimental validation. To enable the
implementation of long switching horizons a recently pro-
posed computationally efficient version of MPDTC can be
considered that drastically reduces the computation time by
using branch and bound techniques from mathematical pro-
gramming [23].
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