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Generalized Model Predictive Pulse Pattern Control
Based on Small-Signal Modelling—Part 2:

Implementation and Analysis
Tinus Dorfling, Hendrik du Toit Mouton, Member, IEEE, and Tobias Geyer, Fellow, IEEE

Abstract—A newly-proposed model predictive pulse pattern
controller that is applicable to higher-order converter systems
is implemented on a low-cost field-programmable gate array.
It is shown how the computations of the underlying quadratic
program of the control algorithm can be reduced, thus enabling
a resource-efficient implementation. The implemented control
algorithm is evaluated via hardware-in-the-loop simulations. The
results show that the proposed controller achieves a short settling
time during transients and the superior harmonic performance
of optimized pulse patterns during steady-state operation.

Index Terms—Optimized pulse patterns, model predictive con-
trol, field-programmable gate arrays

I. INTRODUCTION

Optimized pulse patterns (OPPs) are a pulse-width modu-
lation method in which the switching patterns are computed
offline by minimizing an objective function [1], [2]. OPPs
are known for their superior harmonic performance, signif-
icantly outperforming well-known carrier-based pulse-width
modulation at low pulse numbers (that is, at low switching
frequency to fundamental frequency ratios), see [3] and [4,
Chapter 13.2]. This makes OPPs particularity well-suited to
high-power applications, such as medium-voltage drives. How-
ever, fast closed-loop control of an OPP-modulated higher-
order converter system, such as a grid-connected converter
with an LC filter, is difficult to achieve, and is a largely
unresolved problem.

In the first part of this paper [5], a generalization of the
model predictive pulse pattern controller [6] was proposed to
solve the high-bandwidth control problem underlying higher-
order OPP-modulated converters. The controller—known as
the small-signal controller—regulates the state vector x of
a converter system along its (optimal) steady-state trajectory
x∗ by modifying the switching instants of the nominal pulse
pattern u∗abc, resulting in a modified pulse pattern uabc. It was
shown that the strengths of impulses can be used to represent
the areas that are added or removed to a pulse pattern (in other
words, the modifications) as

λp,i = −∆tp,i∆up,i, (1)

where ∆tp,i = tp,i − t∗p,i is a time modification, with tp,i
and t∗p,i being the modified and nominal switching instants,
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Fig. 1: Impulses represent areas that are added or removed from a pulse
pattern. One phase of a three-level pulse pattern is shown.

respectively; and where ∆up,i = up,i − up,i−1 is a switching
transition, with up,i, up,i−1 ∈ Z. Refer to Fig. 1 for an
illustration. The index p ∈ {a, b, c} denotes a particular phase,
and the index i denotes the ith switching transition in that
phase. Note that the time modifications are encoded in the
strengths of the impulses. Thanks to the use of strengths of
impulses, the underlying optimization problem of the control
algorithm is the quadratic program (QP) [7, Chapter 16]

Λopt = arg min
Λ

1
2ΛTHΛ + cTΛ (2a)

subject to AΛ ≤ b. (2b)

The decision vector Λ ∈ Rnsw , where nsw = na + nb +
nc is the number of switching transition that fall within the
prediction horizon Tp, is known as the strength vector; it is
defined as

Λ = [λa,1 · · · λa,na λb,1 · · · λb,nb
λc,1 · · · λc,nc ]T. (3)

The matrix A and vector b of the inequality constraint (2b)
are shown in Appendix B. Once the QP has been solved, the
optimal strength vector Λopt is obtained. By re-writing (1),
the (optimal) impulse strengths can be translated to the time
modifications

∆topt,p,i = −λopt,p,i

∆up,i
, (4)

which are then added to the nominal switching times to obtain
the (optimal) modified switching instants

topt,p,i = t∗p,i + ∆topt,p,i. (5)

This paper presents an efficient implementation of the
small-signal controller from [5]. To the authors’ knowledge,
this is the first time that a (real-time) control algorithm for
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Fig. 2: Grid-connected neutral-point-clamped converter with an LC filter. The resistances and inductances of the grid and transformer are lumped together as
Rgt = Rg + Rt and Lgt = Lg + Lt, respectively. Note that the resistors represent the equivalent series resistances of the filter inductor and capacitor, as
well as the winding resistance of the transformer.

an OPP-modulated higher-order converter system has been
implemented on a real-time embedded system. Specific at-
tention is given to formulating and solving the QP of (2),
which is the part of the control algorithm with the highest
computational burden. Other aspects of the control algorithm
are not discussed, and the reader is referred to [5, Section V-
H] for more details. Specifically, this paper explains how to
(efficiently) calculate the quadratic and linear terms in the
objective function (that is, the QP formulation), and how to
solve the QP using the gradient projection method. The former
is explained in Section II, and the latter in Section III. This
is followed by a brief discussion of the implementation of the
control algorithm on a low-cost field-programmable gate array
(FPGA) in Section IV. The control algorithm is then verified
in real-time via a hardware-in-the-loop (HIL) simulation in
Section V.

As a case study, a neutral-point-clamped (NPC) converter
connected to the grid via an LC filter is used, as shown in
Fig. 2. For more information on the converter system, refer to
[5, Section III-B].

II. QP FORMULATION

The first step regarding the QP is to calculate the Hessian
H ∈ Rnsw×nsw and vector c ∈ Rnsw of the quadratic objective
function. It is important to note that H and c have to be
calculated at every sampling instant of the control algorithm,
as they are not constant.

Recall from [5, (51)] that the Hessian is defined as H =
V + R. The matrix R is simply a diagonal matrix that pe-
nalizes the control effort. According to [5, (45)], the (i′, j′)th
component of V is defined as

V (i′,j′) = GT
p1e

FT(t∗ij−t∗p1,i)Ξ(Tp − t∗ij)eF (t∗ij−t∗p2,j)Gp2 ,
(6)

where t∗ij = max{t∗p1,i, t∗p2,j}, and

Ξ(∆T ) =

∫ ∆T

0

eF
TtQeF t dt.

The index i′ corresponds to phase p1 ∈ {a, b, c} and the ith
switching transition in that phase. The index j′ is defined

accordingly based on p2. Refer to [5, (47)] on how to solve
Ξ. Furthermore, the i′th component of c is

cT
i′ = x̃T

0 e
FTt∗p,iΞ(Tp − t∗p,i)Gp. (7)

Recall that F ∈ R6×6 and G ∈ R6×3 are the system and
input matrices, respectively, of the state-space representation
of the grid-connected converter system. From [5, Appendix A],
these matrices are given as1

F =

−R+RC

L I2
RC

L I2 − 1
LI2

RC

Lgt
I2 −Rgt+RC

Lgt
I2

1
Lgt

I2
1
C I2 − 1

C I2 02×2


G =

Vd
2L

 I2

02×2

02×2

K,

(8)

for a state vector that is defined as

x =
[
iα iβ ig,α ig,β vc,α vc,β

]T
.

Furthermore, Ga = G[1 0 0]T, Gb = G[0 1 0]T, and Gc =
G[0 0 1]T are vectors that were defined in [5, Section V-B].

The problem structure and the load characteristics can
be exploited when calculating (6) and (7), as shown in
Appendix A. This reduces the computational burden. Note
that the computations regarding the matrix exponentials are
not discussed; it is assumed that the matrix exponentials are
calculated offline and stored in lookup tables.

III. QP SOLVER

Once the Hessian H and vector c have been calculated, the
QP of (2) can be solved using the gradient projection method.
The kth iteration of the method, with stepsize s and gradient
∇f(Λk) = HΛk + c, is

Λk+1 = πZ (Λk − s (HΛk + c)) (9)

1The matrix K = 2
3

[
1 − 1

2
− 1

2

0
√
3

2
−
√
3

2

]
denotes the (reduced) Clarke

transformation matrix. Here, I2 denotes the identity matrix of dimension two,
and 02×2 is the 2× 2 zero matrix.
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where the feasible set is Z = {z : Az ≤ b}. The operator
πZ(·) projects the result onto the set Z . In this paper, a
fixed stepsize of s = 1

Lc
is used for the gradient method,

where Lc = ‖H‖2 is known as the tight Lipschitz constant.
Here, ‖H‖2 denotes the induced 2-norm of the Hessian. For
further reading on the gradient projection method, refer to [8,
Section 3.3] and [9, Section 9.4].

In this section, it is shown how the stepsize s can be
efficiently calculated; this is required at each sampling instant,
since H is time-varying. Once the stepsize s has been calcu-
lated, it is then shown how the projection operation onto the
set Z can be efficiently realized.

A. Efficiently Determining the Stepsize

In order to calculate the stepsize

s =
1

Lc
,

two operations are required: first, the Lipschitz constant Lc
has to be calculated, which is then followed by calculating its
reciprocal in order to determine the stepsize s.

1) Efficiently Overestimating the Lipschitz Constant: Con-
sider the Lipschitz constant Lc, which requires the evaluation
of the (induced) 2-norm of the Hessian H . Evaluating the
2-norm of a matrix is computationally expensive, requiring
an iterative method. Fortunately, a useful relation from [10,
Section 2.3.3] states that the 2-norm of a matrix can be
overestimated as

‖H‖2 ≤
√
‖H‖1‖H‖∞,

and since the Hessian H is symmetric, the relation simplifies
to

‖H‖2 ≤ ‖H‖1 = ‖H‖∞.
Evaluating the infinity-norm (or 1-norm) of a matrix is com-
putationally very cheap, as it is simply

‖H‖∞ = max
1≤i≤nsw

nsw∑
j=1

∣∣H(i,j)

∣∣ , (10)

which is the maximum of the absolute value of the matrix
entries summed up in each row; no multiplications are re-
quired. Denote with L̄c = ‖H‖∞ the overestimated (tight)
Lipschitz constant. An overestimated (tight) Lipschitz constant
L̄c results in an underestimated stepsize s.

2) Calculating a Reciprocal: To calculate the stepsize
s = 1

L̄c
, division needs to be implemented on the FPGA,

since hardware description languages typically do not have a
division primitive. A widely-used numerical method that can
be used to realize division is Newton’s method [11].

In a first step, the Lipschitz constant L̄c is normalized to
the interval [0.5, 1] (this is common practice, and the reasoning
for this will soon become apparent). The normalization can be
easily achieved by using simple bit shifts, which are equivalent
to dividing or multiplying by powers of two. Denote with D =
L̄c2

m ∈ [0.5, 1] the normalized Lipschitz constant, where m ∈
Z is the number of bit shifts required to scale L̄c to the interval
[0.5, 1]. Then,

1

D

0.5 1
0

1

2

1
D

a0 + a1D

D

Fig. 3: Linear least-square approximation of 1
D

in the region D ∈ [0.5, 1].
The coefficients are a0 = 2.8162 and a1 = −1.9066.

can be approximated with z by finding the root of

f(z) =
1

z
−D

by using Newton’s method, where the kth iteration has the
form [11]

zk+1 = zk + zk(1−Dzk). (11)

Once Newton’s method has terminated, the final iteration zopt

(which approximates 1
D ) is denormalized to find the stepsize

as s = zopt2
m.

Note that in order for the method to converge, the initial
solution z0 must fall within the interval (0, 2

D ). Recall that
Newton’s method has quadratic convergence, meaning the
error reduces by εi+1 = ε2i at subsequent iterations. Thus,
finding an initial iterate that is close to the solution 1

D signif-
icantly increases the convergence, since a small initial error
(given by ε0 = 1−Dz0) will rapidly diminish at subsequent
iterations. To generate an initial solution z0, consider the linear
least-squares approximation problem

min
a0,a1

∫ 1

0.5

(
1

D
− (a0 + a1D)

)2

dD. (12)

The (linear) least-squares problem of (12) involves calculating
the coefficients a0 and a1 so that the first-order polynomial
a0+a1D best approximates 1

D (in the least-square sense) in the
region [0.5, 1]. According to [12, Section 8.2], the coefficients
a0 and a1 are the (unique) solutions to the system of linear
equations

a0

∫ 1

0.5

1dD + a1

∫ 1

0.5

DdD =

∫ 1

0.5

1

D
dD

a0

∫ 1

0.5

DdD + a1

∫ 1

0.5

D2dD =

∫ 1

0.5

1dD.

After solving the trivial integrals, the solutions to the system
of linear equations are a0 = 2.8162 and a1 = −1.9066.
The linear least-square approximation is shown in Fig. 3. The
initial iterate z0 of Newton’s method is set equal to the linear
(least-squares) approximation of 1

D , z0 = a0 + a1D. Note
that these (static) coefficients always result in the best linear
approximation (in the least-square sense) for the initial iterate
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z0, since D is always in the interval [0.5, 1]. With the initial
iterate z0 = a0 +a1D, only two to three iterations of (11) are
(typically) required for sufficient accuracy.

B. Efficient Gradient Projection Method

As seen from (9), the gradient projection method involves
two steps. The first step, taking the (unconstrained) step

Λk −
1

L̄c
(HΛk + c) (13)

is trivial to realize. The second step, projecting the uncon-
strained step onto the set Z , requires special attention to
efficiently implement.

1) Transforming the Decision Variable for an Efficient
Projection: In a first step, the decision variable is transformed
to the modified switching instants which enables an efficient
projection onto the feasible set. From [5, Section V-D], it is
shown that the constraints Z = {z : Az ≤ b} translate to

0 ≤ tp,1 ≤ tp,2 ≤ · · · ≤ tp,np
≤ Tp (14)

for all p ∈ {a, b, c}. The impulse strengths (which are the
elements in the strength vector Λ) can be written in terms of
the modified switching instants as

tp,i = t∗p,i +
λp,i

∆up,i
(15)

(recall that ∆up,i ∈ {−1, 1}, no division is required). Once
an unconstrained step has been taken according to (13),
the impulse strengths are transformed to modified switching
instants according to (15) before the result is projected.

Next, it is shown how to efficiently project onto the set of
(14). Note the constraints of a phase are independent of the
constraints in another phase; the projection of each phase can
be considered separately. Thus, only the projection of a single
phase is considered from here on in. Denote with tp ∈ Rnp the
vector of modified switching instants that is to be projected.

2) Efficient Projection onto a Truncated Monotone Cone:
Although most of the results in this section follows from [13],
they are repeated here for convenience.

The constraints of (14) form a so-called truncated monotone
cone, which in its general form is

K̄ = {z :
¯
z ≤ z1 ≤ z2 ≤ · · · ≤ znz ≤ z̄}, (16)

where
¯
z and z̄ are the lower and upper bounds, respectively.2

As noted in [13], a truncated monotone cone can be written
as the intersection between a (convex) monotone cone and a
box,

K̄ = K ∩ B,

where

K = {z : z1 ≤ z2 ≤ · · · ≤ znz}
B = {z :

¯
z ≤ zi ≤ z̄ for i = 1, 2, . . . , nz}

are the monotone cone and box, respectively. It is shown
according to [13, Theorem 1] that the projection of tp onto

2In the case of (14), the lower and upper bounds are
¯
z = 0 and z̄ = Tp,

respectively.

a truncated monotone cone is equivalent to first projecting it
onto the monotone cone and then onto the box,

πK̄(tp) = πB(πK(tp)). (17)

The second projection, onto the box B, is extremely simple to
realize: the projection of the ith component of ξ is simply

[πB(ξ)]i = min{max{ξi,
¯
z}, z̄}. (18)

The first projection onto the monotone cone K is significantly
more complex to realize, and is explained next.

Note that a monotone cone can be defined in matrix form
as K = {z : Cz ≤ 0nz−1}, where C ∈ R(nz−1)×nz is a
first-order difference matrix,

C =


1 −1 0 · · · 0
0 1 −1 0
...

. . . . . .
...

0 · · · 0 1 −1

 .
Although no closed-form expression exists for the projection
onto a monotone cone, an exact solution can be iteratively
obtained (see [14]). However, the exact solution is com-
putationally expensive, requiring pseudoinverses of matrices,
and is not pursued in this paper. Fortunately, [13] proposed
a computationally efficient approximation that requires no
(pseudo)inverses of matrices; due to this advantage, the ap-
proach of [13] is thus adopted in this work. As shown in [13,
(25a)], the approximated projection follows as

πK(tp) = tp −CTηopt (19)

with
ηopt = arg min

η≥0

1
2η

TCCTη − (Cy)
T
η, (20)

where η ∈ Rnp−1 is the Lagrange multiplier. In order to
solve (20) to a certain accuracy, the gradient projection method
can be used; refer to the gradient projection that is employed
to solve (20) as the inner gradient method, whereas (9) is
referred to as the outer gradient method. It is shown with [13,
Proposition 2] that the largest Ld and smallest µd eigenvalues
of the (dual) Hessian CCT ∈ R(np−1)×(np−1), which is a
second-order difference matrix,

CCT =



2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
...

. . . . . . . . .
...

0 0 · · · −1 2 −1
0 0 · · · 0 −1 2


,

always satisfy
Ld + ud = 4.

This results in an optimal (fixed) step size of s = 2
Ld+ud

= 1
2

for the inner gradient method; thus, the kth (inner) iteration is

ηk+1 = max
{

0np−1,ηk − 1
2 (CCTηk −Ctp)

}
. (21)

Importantly, an iteration of (21) only requires additions, sub-
tractions, and bit shifts; no multiplications are required. It
is noted in [13] that if warmstarting is employed from the
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last iterate ηk+1 for each outer iteration of (9), only a single
(inner) iteration of (21) is sufficient for small problem sizes
(e.g. np = 5).

To summarize, an iteration of the gradient projection method
of (9) involves the following steps. Once an unconstrained step
has been taken according to (13), the impulse strengths are
transformed to modified switching instants according to (15).
Then, the vector of modified switching instants tp is projected
onto the monotone cone with (19), which is then projected
onto the box with (18). The modified switching instants are
then transformed back to impulse strengths according to

λp,i = (tp,i − t∗p,i)∆up,i
for the next iteration of the (outer) gradient projection method.

IV. IMPLEMENTATION

The entire control algorithm is implemented in very
high speed integrated circuit hardware description language
(VHDL). Although details regarding VHDL are omitted for
the sake of brevity, the interested reader is referred to the
excellent textbook [15] on how to use VHDL effectively.

A. Design Choices

The entire design of the control algorithm uses a single
clock, which is a recommended design practice (see [15,
Section 19.3.2]). It is decided that the design is clocked using
a 50 MHz clock. For a controller with a sampling interval of
Ts = 25 µs, this results in 1250 clock cycles being available
to execute the control algorithm. A low-cost Xilinx XC7Z020
Zynq-7000 FPGA is used, which has 220 DSPE41 slices; each
DSP slice contains a single 25×18 bit multiplier.3 Next, some
of the design choices of the control algorithm are discussed.

First, fixed-point arithmetic is used. When compared to
floating-point arithmetic, fixed-point arithmetic requires less
resources and results in faster computations. Furthermore,
there is little reason to use floating-point arithmetic when
considering the fact that model inaccuracies and quantization
errors (from analogue-to-digital converters) are present in
a practical system. Floating-point arithmetic may only be
required if certain aspects of a control algorithm require high
numerical precision for stability purposes. Thankfully, the
gradient method of Section III can tolerate rounding errors
[16], and numerical stability is achieved even with a fixed-
point arithmetic.

Second, all variables are limited to a word length of 18
bits to minimize the usage of DSP slices. Using word lengths
that exceed the capabilities of a single DSP slice require
additional DSP slices to be invoked. Furthermore, 18 bits
yielded sufficient numerical accuracy.

Third, special attention is given on how the DSP slices are
utilized in the design. It is possible to multiply and use the
answer within a single clock cycle. Doing so, however, will

3Operations such as additions, subtractions, or bit shifting (which relates to
multiplication or division by powers of two) typically require little resources
to realize and can be implemented using (cheap) logic elements. On the other
hand, multiplications are realized by the dedicated multipliers (DSP slices)
within the FPGA.

X

CLK

X

CLK

X

CLK

x1

x2

x3

x4

y

DSP Slice

Pipeline Register

Fig. 4: Example of pipelining.

severely limit the clock speed the DSP slices can be operated
at—and consequently the clock speed of the entire design.
In order to operate a DSP slice at a high clock speed, a
technique known as pipelining should be used; the result of
a DSP slice is passed through a so-called pipeline register
before it is used. For an illustrative example, refer to Fig. 4,
where the multiplication y = x1x2x3x4 is shown. As seen,
pipeline registers are placed at the output of each DSP slice.4

Note that two clock cycles are required to ready the pipeline
registers before the result y is available.

Fourth, the matrix exponentials are calculated offline, at a
time resolution of 1 µs and over an interval of −1 ms to 3 ms
(for 18-bit words, this results in 158 kB of data), and stored
in lookup tables. Furthermore, the steady-state trajectories are
also calculated offline, at a time resolution of 25 µs and over
one fundamental period (for 18-bit words, this results in 10 kB
of data per steady-state trajectory), and stored in lookup tables.

Finally, recall that the problem size (the dimension of the
decision variable Λ) is time-varying and given as nsw = na
+ nb + nc (the total number of switching transitions that
fall within the prediction horizon Tp). The design on the
FPGA must be of a fixed size, since the hardware required
for the design has to be invoked during synthesis; once the
FPGA is programmed, additional hardware cannot be invoked.
The (fixed-size) implementation assumes a maximum of five
switching transitions per phase at any given moment, leading
to a maximum problem dimension of 15. For a pulse number
of d = 5 and a prediction horizon of Tp = 2 ms, there are
usually no more than three switching transitions per phase.

B. DSP Slice Usage and Execution Time

Out of the 220 DSP slices that are available, only 69 were
required for the design: 50 for formulating the QP (that is,
calculating the Hessian and the vector), 3 for determining the
stepsize, and 16 for the gradient projection method.

To calculate the Hessian and the vector, 124 clock cycles
are required. Calculating the stepsize (using 3 iterations of
Newton’s method) requires 24 clock cycles. Solving the QP

4Additional pipeline registers may also be used, which may result in even
higher clock speeds. However, a single pipeline register at the output enabled
a DSP slice to be operated at 50 MHz.
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Fig. 5: Setup of the controller and HIL on the FPGA, where x∗ denotes the
steady-state (reference) trajectories, and u∗abc and uabc are the nominal and
modified optimized pulse patterns, respectively.

with the gradient projection method (using 35 iterations)
requires 921 clock cycles. In total, 1072 clock cycles are
required to execute the entire control algorithm, translating to
21.4 µs, which is within the sampling interval of Ts = 25 µs.

V. RESULTS

To validate the FPGA implementation, a HIL simulation
is considered [17]. The HIL simulation is realized using a
discrete-time state-space representation (with a sampling inter-
val of 500 ns) of the converter system, which is implemented
using the remaining resources on the FPGA. Fixed-point
variables with a word length of 32 bits are used to accurately
simulate the system. Note that the HIL simulation assumes an
idealized setup: effects such as measurement errors, parameter
variation, deadtime, delays, dc-link voltage ripple, fluctuations
of the neutral-point potential, and so on, are not present. A
diagram of the HIL setup on the FPGA is shown in Fig. 5.

A medium-voltage grid-connected converter system is used;
the parameters can be found in Appendix C. The system
possesses two resonances at 262 Hz and 491 Hz. The sampling
interval and prediction horizon of the controller are set to
Ts = 25 µs and Tp = 2 ms, respectively. All state variables
are penalized equally with Q = I6, and all switching instant
modifications are also penalized equally with R = 2Insw .
The pulse number d = 5 is used, which results in a device
switching frequency of fsw = df1 = 250 Hz (which is a
typical switching frequency of a medium-voltage converter
system) for a f1 = 50 Hz grid. The OPPs are calculated
such that the harmonic distortions of the grid currents are
minimized, considering the filter transfer function from the
switching function to the grid current harmonics. The resulting
(primary) switching angles are shown in Fig. 6.

All waveforms are normalized using a per-unit (pu) system,
whose base values can be found in Appendix C.

A. Steady-State Performance

In Fig. 7, the steady-state waveforms of the grid current
and switch positions are shown. The converter is operating
at rated power with unity power factor (that is, P = 1 pu
and Q = 0 pu). During steady-state conditions, the controller
makes no adjustments to the nominal pulse pattern. Thus, the
steady-state performance is entirely dictated by the (offline-
calculated) nominal pulse pattern, which achieves an optimal
ratio of harmonic distortions per switching frequency. The total
demand distortion of the grid current is Ig,TDD = 1.57 %.
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Fig. 6: The optimal switching angles α for pulse number d = 5.

B. Quasi-Steady-State Performance

A practical converter system rarely operates in pure steady-
state conditions due to unmeasured and unmodelled distur-
bances, leading to the modulation index to have small pertur-
bations. In the case that the operating point of a converter
system is at a discontinuity of the switching angles, it is
paramount that the controller is able to react fast when the
operating point is moved past such discontinuities.

Consider Fig. 8. Initially, a pulse pattern with a modulation
index of ma = 1.019 is applied to the converter system.
This modulation index coincides with the switching angles
that are marked with the black dots in Fig. 6. At 15 ms, the
modulation index changes slightly to ma = 1.024, which
causes a discontinuity in the switching angles (marked with
the gray dots). As seen in Fig. 8, the controller quickly rejects
any excursions in the converter states and promptly regulates
the state variables onto their (new) steady-state (reference)
trajectories; the error never exceeds 1.25 % and is reduced
to less than 1 % within 0.72 ms (or 29 controller sampling
intervals). It can be observed in Fig. 8(d) that only very small
adjustments are made to the pulse patterns. Without closed-
loop control, multiple fundamental periods (roughly eight) are
required for the excursions to diminish due to the very small
ohmic resistances in the system.

C. Performance During a Reference Step

In Fig. 9, the converter is initially operating at rated power
and at unity power factor. The (real) power reference is stepped
to P ∗ = 0 pu at 5 ms, and then back to P ∗ = 1 pu at 17 ms.
The controller quickly regulates all state variables to their
respective references. During the transients, it can be observed
from Fig. 9(d) that the nominal pulse pattern is modified
significantly; for example, note that from 17 ms to 22 ms some
of the switching transitions are removed. Once the converter
enters the steady state, the (unmodified) nominal pulse pattern
is applied to the converter system and the superior harmonic
performance of the OPPs is achieved.

Although there are some oscillations present during the
transients, it should be noted that the converter system is
underdamped and, due to the low switching frequency, there
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Fig. 7: Steady-state operation.

are only a few switching transitions available that can be
used to achieve closed-loop control. It is likely that the
response time can be reduced by inserting additional switching
transitions; this is known as pulse insertion and the MP3C
algorithm utilizes this technique, see [4, Section 12.6] and
[18].

D. Performance During a Grid Fault

The converter system is initially operating at rated power
and unity power factor in Fig. 10. At 5 ms, a (symmetrical)
three-phase-to-ground short-circuit fault occurs and the grid
phase voltage drops to 0.05 pu. In order to feed the short
circuit, the grid current setpoint is increased to 1.2 pu. Note
that the new steady-state trajectory considers the now-reduced
grid voltage. As seen, the controller quickly rejects the fault
and feeds the short circuit. This is typically required in small
or islanded grids—with significant power electronic sources
and loads—to ensure selectivity of protective devices during
short circuits. In particular, the circuit breaker closest to the
fault is meant to isolate the faulty equipment, minimizing the
interruption to other loads. By feeding a significant current
into the short circuit for up to a few 100 ms, the converter
system supports selectivity of the protective devices.

VI. CONCLUSIONS

This paper focuses on the implementation of the QP under-
lying the proposed controller from [5]. The main challenges
are the (relatively) high dimension of 15 of the decision

variable, the very short sampling interval of 25 µs, and the
time-varying nature of the Hessian matrix. To address these
challenges, recommendations were provided to reduce the
computational burden of the QP with the aim to enable an
efficient implementation on an FPGA.

In particular, the number of calculations required during the
QP formulation can be reduced by exploiting the algebraic
structure of the control problem and the characteristics of the
load. It was further shown that the Lipschitz constant can be
overestimated using the infinity-norm of the Hessian, and how
the stepsize of the gradient method can be computed using
Newton’s method. Finally, it was explained how the gradient
projection method can be efficiently implemented. Using these
recommendations, an efficient implementation of the standard
controller was achieved on a low-cost FPGA, as only 69 DSP
slices were required. The control algorithm required 21.4 µs
to execute.

The performance of the controller was evaluated by using
(idealized) HIL simulations. Results showed a controller with
a fast dynamic response during transients, such as reference
steps and faults. During steady-state operation, the controller
applies the nominal pulse patterns, thus achieving a superior
harmonic performance.

APPENDIX A
REDUCING THE COMPUTATIONAL BURDEN OF THE QP

FORMULATION

In this appendix the structure of the Hessian H and
vector c are analyzed and exploited in order to reduce the
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Fig. 8: Quasi-steady-state operation. The open-loop responses are shown by the black lines. The steady-state (reference) trajectories are indicated by dashed
lines.
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Fig. 9: Reference steps. The steady-state (reference) trajectories are indicated by dashed lines.

computational burden with the aim of enabling an efficient
implementation on an FPGA.

A. Exploiting the Problem Structure
In a first step, to reduce the computational burden, several

aspects of the problem can be exploited. First, since t∗ij =
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Fig. 10: Grid fault. The steady-state (reference) trajectories are indicated by dashed lines.

max{t∗p1,i, t∗p2,j}, it can be observed that either

eF
T(t∗ij−t∗p1,i) or eF (t∗ij−t∗p2,j)

of (6) will be the identity matrix. This means that one of the
matrix-vector products

GT
p1e

FT(t∗p,ij−t∗p1,i) or eF (t∗ij−t∗p2,j)Gp2 ,

where each product may require up to 36 multiplications, is
not required to be calculated. For the elements on the diagonal
of V , i′ = j′ holds. This implies that p = p1 = p2 and
t∗p,i = t∗p1,i = t∗p2,j . This leads to both

eF
T(t∗ij−t∗p1,i) and eF (t∗ij−t∗p2,j)

being identity matrices, and the diagonal components of V
have the form

V (i′,j′) = GT
pΞ(Tp − t∗p,i)Gp. (22)

Finally, note that the term

Ξ(Tp − t∗p,i)Gp

of (22) is present in (7). Thus, half of the terms of ci′ have
already been calculated when the diagonal components of V
are calculated.

B. Exploiting the Load Characteristics

Next, characteristics of the load are exploited in order to
reduce the computational burden even further. Due to the α
and β components of the system matrix F being decoupled,

half of the components of the matrix exponential eF t are zero;
it is of the structure

eF t =


x 0 x 0 x 0
0 x 0 x 0 x
x 0 x 0 x 0
0 x 0 x 0 x
x 0 x 0 x 0
0 x 0 x 0 x

 ,
where x denotes a nonzero element. Thus, the term

x̃T
0 e
FTt∗p,i

of (7) only requires 18 multiplications (instead of 36). Note
that for any given phase p ∈ {a, b, c} only the top two elements
of Gp are nonzero, see (8). This results in matrix-vector
multiplications in (6) of the forms

eF tGp and Ξ(∆T )Gp

only requiring 6 multiplications (instead of 36).

APPENDIX B
MATRIX FORM OF CONSTRAINTS

The matrix Ap and vector bp are defined as

Ap =



1
∆up,1

0 0 · · · 0 0

− 1
∆up,1

1
∆up,2

0 · · · 0 0

0 − 1
∆up,2

1
∆up,3

· · · 0 0
...

. . .
...

...
0 0 0 · · · − 1

∆up,np−1

1
∆up,np

0 0 0 · · · 0 1
∆up,np


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TABLE I: System parameters of the medium-voltage case study.

Parameter Symbol Value Per unit

Converter

Dc-link voltage Vd 4840 V 1.8818 pu
Rated apparent power SR 9 MVA 1 pu
Half dc-link capacitance Cd 9.9 mF 3.4290 pu
Filter inductance L 350 µH 0.0997 pu
Filter capacitance C 420 µF 0.1455 pu
Filter inductor ESR R 0.3 mΩ 0.000 27 pu
Filter capacitor ESR RC 4 mΩ 0.0036 pu
Transformer inductance Lt 526.41 µH 0.15 pu
Transformer resistance Rt 16.54 mΩ 0.015 pu

Grid

Grid-side inductance Lg 349.19 µH 0.0995 pu
Grid-side inductor ESR Rg 10.97 mΩ 0.010 pu
Fundamental frequency f1 50 Hz 1 pu
Grid voltage (line-to-line) Vg 3150 V (rms) 1.2247 pu
Rated phase current IR 1649.6 A (rms) 0.7071 pu

and
bp =

[
t∗p,1 t∗p,2 − t∗p,1 · · · Tp − t∗p,np

]T
,

respectively.

APPENDIX C
PARAMETERS

The parameters of a 9 MVA grid-connected NPC converter
with an LC filter are shown in Table I. Integrated-gate-
commutated thyristors (IGCTs) are depicted in Fig. 2, since
they are the preferred choice of semiconductors at these power
levels. IGCTs offer very low on-state losses, an output voltage
of 3.15 kV is achieved without series-connection of devices,
and IGCTs allow high thermal cycling due to their press-pack
housing. A per-unit system is established with the following
base values: VB =

√
2
3Vg , IB =

√
2IR, and ωB = ω1.
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