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Abstract—A model predictive controller based on optimized
pulse patterns is proposed that is suitable for higher-order
linear systems, such as converters with LC filters. The controller
manipulates the switching times an optimized pulse pattern. The
switching time modifications are approximated by the strengths
of impulses, which are based on a small-signal linearization
around the nominal switching instants. With these, the evolution
of the state variables over the prediction horizon can be described
by a set of linear differential equations. An objective function
penalizes the predicted tracking error of the controlled variables,
such as the converter currents, filter capacitor voltages, and
grid currents, over a prediction horizon. Thanks to the use
of impulse strengths, the underlying optimization problem is a
convex quadratic program, which can be solved in real time to
determine the switching time modifications of the pulse pattern
to be applied by the controller.

Index Terms—Optimized pulse patterns, synchronous optimal
pulse width modulation, model predictive control

I. INTRODUCTION

Optimized pulse patterns (OPPs) [1] are known for
their superior harmonic performance. At low pulse numbers
(i.e. at low switching frequency to fundamental frequency
ratios), OPPs significantly outperform well-known carried-
based pulse-width modulation as well as state-of-the-art con-
trol techniques during steady-state conditions, see [2] and
[3, Chapter 13.2]. This makes OPPs particularly beneficial
for industrial power electronic systems that operate at low
switching frequencies (such as medium-voltage drive systems).
Due to the computationally demanding optimization problem
underling OPPs, the switching angles of the pulse patterns are
calculated offline over a range of modulation indices and pulse
numbers; the switching angles are stored in lookup tables. Dur-
ing real-time operation of a converter system, the pulse pattern
corresponding to the desired operating conditions is read-out
from the lookup tables. It is important to realize that OPPs
are (offline-calculated) steady-state switching sequences; the
nominal pulse patterns are only optimal during steady-state
conditions. During transients, OPPs are suboptimal and lead to
a sluggish response; a high-bandwidth closed-loop controller
is required to ensure a short response time.

However, designing a controller with a high dynamic per-
formance for an OPP-modulated converter is a difficult task.
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Although control algorithms exist that address the control
of first-order converter systems, the control of higher-order
converter systems is a largely unexplored topic.

In this paper, a new OPP-based model predictive control
method is proposed that achieves good performance during
transients as well as during steady-state operation. The method
• is applicable to any linear higher-order converter system

with multiple state variables and integer switch positions,
• regulates the system states along their optimal steady-

state reference trajectories, and
• achieves fast responses during transients.
This paper is structured as follows. First, a review of

existing control methods for OPPs is given in Section II. In
Section III, a higher-order converter system is described, and it
is shown how the steady-state trajectory of such a system can
be determined. Section IV explains how the modifications of a
pulse pattern are modelled by using the strengths of impulses.
A model predictive controller is then derived in Section V.

The implementation and performance evaluation of the
proposed control method are discussed in the second part of
this paper [4].

II. REVIEW OF CONTROL METHODS FOR OPPS

Unlike carried-based pulse-width modulation, OPPs lack a
fixed-modulation interval and do not have regularly-spaced
sampling instants at which the ripple component of certain
converter quantities is zero. This implies that both the funda-
mental component and the ripple of the converter quantities are
sampled. This results in classical linear controllers interpreting
the ripple, which is a natural characteristic of the OPP, as
an error. A linear controller will thus attempt to regulate the
ripple to zero, resulting in suboptimal pulse patterns during
the steady state. In order to prevent this, the bandwidth of the
controller should be low so that it does not react to the ripple;
consequently, the controller response becomes sluggish. Linear
controllers are thus not a suitable choice for OPP-modulated
converter systems that require a short response time.

A. Early Methods

As a first step away from a traditional linear controller for
pulse patterns, a current trajectory controller was proposed in
1991 for electrical machines [5]. The method first determines
the steady-state (stator) current trajectory that results from
the pulse pattern. A deadbeat-type controller regulates the
stator current along its steady-state trajectory by modifying the
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switching instants. In 2007, the method was adapted to control
the stator flux instead of the stator current trajectory [6]. The
advantage of tracking the stator flux trajectory is that the stator
flux is independent of the leakage inductance of a machine.
However, both methods require the fundamental component
and ripple as separate quantities. Due to the fundamental
component not being readily available when a converter is
modulated by pulse patterns, a dedicated observer is required
[7].

B. Model Predictive Pulse Pattern Control

Recently in 2012, the control problem underlying OPPs was
formulated in a model predictive control (MPC) framework
[8], giving rise to model predictive pulse pattern control
(MP3C) [9]. Arguably, MP3C is the most established OPP-
based method, as it is being used by ABB in their main
medium-voltage drive system [10].

Consider a three-level converter (with a half dc-link voltage
of Vd

2 ) that is modulated by a pulse pattern u and that is
connected to the stator of an induction machine. For simplicity,
only a single phase is considered (the concept generalizes to
all three phases). When neglecting the stator resistance, the
stator flux ψs of an induction machine is simply the integral
of the (input) stator voltage,

ψs(t) = ψs,0 +
Vd
2

∫ t

0

u(τ) dτ, (1)

where ψs,0 is the stator flux at the initial (sampling) instant.
With (1) as the internal dynamic model of the predictive
controller, the stator flux is predicted at the end of the
prediction horizon Tp [that is, ψs(Tp) is predicted]. Denote
with nsw the number of switching transitions that occur during
the prediction horizon Tp. It is fairly straightforward to show
that by modifying the ith switching transition of a pulse pattern
by ∆ti = ti−t∗i , where ti and t∗i are the modified and nominal
switching times, respectively, that the modification in stator
flux at the end of the horizon is

∆ψs(∆ti) = −Vd
2

nsw∑
i=1

∆ti∆ui, (2)

where ∆ui = ui − ui−1 ∈ {−1, 1} is the change in switch
position (also known as the so-called switching transitions).

Similar to the early trajectory-based methods, MP3C regu-
lates the stator flux ψs along its (optimal) steady-state trajec-
tory ψ∗s . Since the stator flux is simply the (scaled) integral of
the pulse pattern, it is easy to derive the steady-state trajectory.
Note that MP3C considers the instantaneous stator flux, and,
unlike the earlier methods, does not require the fundamental
component and ripple to be separate quantities. Since an OPP
is, per definition, optimal at steady-state operating conditions,
the control algorithm makes no modifications to the pulse
pattern in the steady state (assuming idealized conditions).
This results in MP3C having a dynamic response similar to
deadbeat-type controllers while having the superior harmonic
performance of OPPs in the steady state, see [9] and [3,
Chapter 13].

In [11], the MP3C algorithm was extended so that carrier-
based pulse-width modulated switching patterns can be gener-
ated online when operating at high pulse numbers and at low
fundamental frequencies. Another control method, similar to
the early trajectory-based methods and MP3C, was proposed
in [12].

As observed from (1), the internal dynamic model is an
integrator. Examples of such loads are induction machines
and grid-connected converters where the resistance can be
neglected. However, this simple internal dynamic model is
also a limitation of MP3C; it is only applicable to (first-order)
integrator systems. When considering higher-order systems,
such as converters with LC filters, the internal dynamic
model of MP3C cannot capture the resonant behaviour of
the converter system. To account for this, MP3C needs to
be augmented by an additional damping term in its objective
function [13], or an outer damping loop must be added [14].
Whilst these approaches might be effective during steady-state
operation, the performance during large transients is rather
poor. More specifically, to avoid exciting the filter resonance
too strongly, large reference step changes should be filtered
by a ramp-limiter, resulting in a sluggish step response. These
limitations of MP3C promote the need for a generalized OPP-
based MPC scheme that is applicable to higher-order converter
systems.

C. Methods for Higher-Order OPP-Modulated Systems

Although there exist control methods to address higher-
order OPP-modulated converter systems, these methods do
have some characteristics that either make them impractical
or limit their performance.

In [15], an MPC control problem is formulated with a
continuous-time state-space model. The modifications to the
switching instants are determined by solving a nonlinear
program. However, sinusoidal references are used instead of
the (optimal) steady-state trajectory resulting from the pulse
pattern. This implies that the (natural) ripple from the pulse
pattern is interpreted as an error and will thus be modified,
which during steady-state conditions results in a suboptimal
performance. The optimization problem, in its original non-
linear form, requires an optimization method to evaluate the
matrix exponential at every iteration and, in addition, also
requires a moderate amount of matrix multiplications; this
results in a high computational burden. In order to simplify the
optimization problem to a quadratic program (QP), the state
variables are linearized around the nominal switching instants.
However, the linearization requires that the three-phase voltage
vectors have a fixed switching sequence. This implies that a
switching transition in one phase cannot be shifted beyond a
switching transition in another phase, thus imposing a major
limitation. In combination with this limitation, the modifica-
tions to the switching transitions are also required to be very
small due to the limited accuracy of the linearization. This
results in very conservative constraints that lead to a sluggish
response during transients. Furthermore, at certain operating
points, the linearized problem also significantly increases the
harmonic distortion (see [15, Fig. 3]).
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In [16], the MPC control problem is formulated using
a discrete-time state-space model. Relative to the current
sampling instant k, the controller predicts the system states
at even-indexed switching instants (that is, at k + 2, k + 4,
and so forth) and can manipulate the odd-indexed switching
instants (that is, at k+1, k+3, and so forth). Note that the pre-
diction instants are, therefore, irregularly spaced. The method
introduces a nonlinear transformation of the decision variables
(which are the odd-indexed switching instants), transforming
the problem from a nonconvex optimization problem into a
QP. As with [15], the state references are also sinusoidal and
therefore suboptimal. Although the method assumes a fixed
switching order, the response time is still modest. However, the
method does make an assumption regarding the characteristics
of the load: the total energy in the system stays constant during
an unforced response (that is, when the input and grid voltage
are zero), implying elements that dissipate power have to be
ignored in the internal model.

Another generalized OPP-based controller is proposed in
[17, Chapter 4]. The MPC problem is formulated in the
discrete-time domain at regularly-spaced prediction instants.
The core principle of the method is to transform the discrete-
valued pulse pattern into a real-valued control signal that is
easy to modify. This is achieved by averaging the pulse pattern
between the discrete-time instants. Once the real-valued signal
has been modified by solving a QP, a reverse transformation is
required in order to retrieve the modified switching transitions.
Unlike the methods in [15] and [16], this method uses the opti-
mal steady-state trajectory that results from the pulse pattern as
a reference. However, the method does have some limitations.
Switching transitions are not allowed to move out of the
sampling interval they are contained in, therefore restricting
the degree by which the pulse pattern can be modified. Thus,
in order to allow moderate modifications, the sampling interval
is required to be relatively long. On the other hand, the
averaging step introduces an error in the steady-state pulse
pattern, which increases as the sampling interval is increased.
This creates conflicting objectives. The reverse transformation
itself requires an additional optimization problem to be solved:
a linear program. Nonetheless, the method results in a decent
response time and holds the most promise when compared to
the methods of [15] and [16].

The controller proposed in Chapter V has none of the
limitations of the aforementioned control methods, and is a
natural generalization of MP3C. Furthermore, the proposed
controller is practically viable, as it has been implemented on
a low-cost field-programmable gate array (see the second part
of this paper [4]) and can execute in real-time; none of the
aforementioned methods have been verified to be practically
feasible.

III. CONVERTER SYSTEM AND ITS STEADY-STATE
TRAJECTORY

The formulation of the control algorithm in Section V is
general enough so that any linear time-invariant system that
is modulated with OPPs can be considered. This includes
single-phase and multi-phase converters, two-level and multi-
level converters, inverters and rectifiers, and voltage-source

and current-source converters. Such a power converter system
with linear elements and integer inputs can be described by
the continuous-time state-space representation

dx(t)

dt
= Fx(t) +Guabc(t) + Pvg(t), (3)

where x ∈ Rnx and vg ∈ Rnv are the state and disturbance
vectors, respectively, with nx ∈ N+ and nv ∈ N+

0 . Note the
it is assumed that the disturbance is known. The input vector
uabc = [ua ub uc]

T ∈ Z3 is the three-phase switch position
(this can easily be extended to multi-phase systems). Finally,
F , G, and P are the state, input and disturbance matrices,
which characterize the system.

A. Case Study: Grid-Connected NPC Converter
As case study, consider a three-level three-phase neutral-

point-clamped (NPC) converter that is connected to the grid
via an LC filter, as depicted in Fig. 1. The phase voltages are
denoted by vp, where p ∈ {a, b, c} are the three phases. As-
sume that the dc-link capacitors have an infinite capacitance,
and that the neutral point N has no fluctuations, dividing the
dc-link voltage Vd evenly across the dc-link capacitors.1 Each
phase leg can synthesize three voltage levels: −Vd

2 , 0, Vd

2 .
Thus, the output voltage for a particular phase is given by

vp =
Vd
2
up,

where up ∈ {−1, 0, 1} represents the switch position of the
particular phase.

The three-phase grid voltages are assumed to be symmet-
rical, and its phase voltages are shifted by 120 degrees with
respect to each other with a positive phase sequence.

B. State-Space Representation of a Grid-Connected NPC
Converter

The three-phase converter current, capacitor voltage, and
grid current are defined as iabc = [ia ib ic]

T, vc,abc =
[vc,a vc,b vc,c]

T, and ig,abc = [ig,a ig,b ig,c]
T, respectively.

These quantities are transformed into the stationary orthogonal
reference frame with the Clarke transformation,

ξαβ = Kξabc,

which maps any variable ξabc = [ξa ξb ξc]
T in the abc-plane

to the two-dimensional vector ξαβ = [ξα ξβ ]T in the αβ-plane
via the transformation matrix

K =
2

3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
.

Based on this, the state vector is defined as

x =
[
iα iβ ig,α ig,β vc,α vc,β

]T
and the converter system is described in a continuous-time
state-space form using (3). The grid voltage is defined in the
stationary orthogonal reference frame as

vg(t) =

[
vg,α(t)
vg,β(t)

]
=

√
2

3
Vg

[
sin(ω1t)
− cos(ω1t)

]
,

1To address the balancing of the neutral-point potential, the methods
proposed in [18] and [19] can be incorporated in the control algorithm.
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Fig. 1: Grid-connected neutral-point-clamped converter with an LC filter. The resistances and inductances of the grid and transformer are lumped together as
Rgt = Rg + Rt and Lgt = Lg + Lt, respectively. Note that the resistors represent the equivalent series resistances of the filter inductor and capacitor, as
well as the winding resistance of the transformer.

where Vg is the root-mean-square (rms) line-to-line grid volt-
age, and ω1 = 2πf1 is the fundamental angular frequency.
The state-space matrices are shown in the Appendix A. The
grid voltage vg is treated as a known disturbance. Note that
the input uabc is given in the three-phase abc frame, whereas
the state vector x and the disturbance vector vg are given in
the stationary orthogonal αβ reference frame.

C. Steady-State Trajectory of a Converter System Modulated
by OPPs

The following method is a modification to the method
proposed in [20].

It can be shown from (3) that the steady-state trajectory
resulting from the nominal pulse pattern u∗abc at time t ∈
[0, T1], where T1 is the fundamental period, is

x∗(t) = eF tx∗0 +

∫ t

0

eF (t−τ)Gu∗abc(τ) dτ

+

∫ t

0

eF (t−τ)Pvg(τ) dτ,

(4)

where x∗0 is the initial steady-state value at the start of the
fundamental period T1. In order to calculate the steady-state
trajectory over a fundamental period, the initial steady-state
value x∗0 first needs to be calculated. Thanks to linearity, the
principle of superposition can be used to calculate the effect
of the pulse pattern and grid voltage separately as

x∗(t) = x∗OPP(t) + x∗g(t) (5)

where

x∗OPP(t) = eF tx∗OPP,0 +

∫ t

0

eF (t−τ)Gu∗abc(τ) dτ. (6)

For now, the grid is ignored and assumed to be short-
circuited. Consider the (three-phase) nominal pulse pattern
in Fig. 2, which has N = 12d switching transitions over
the fundamental period T1 (where d is the pulse number).
Denote with t∗i the (three-phase) nominal switching times,
where i = 0, 1, . . . , N + 1. The switching times t∗0 = 0 and

t∗0 t∗N+1

−1
0
1

−1
0
1

−1
0
1

t∗1

t∗2
t∗N

Time

Fig. 2: Three-phase nominal pulse pattern u∗
abc. The pulse number is d = 3,

and there are a total of N = 36 switching transitions across all three phases.

t∗N+1 = T1 are introduced to take the boundaries into account.
Due to periodicity, it always holds that

x∗OPP(0) = x∗OPP(T1) (7)

in steady-state conditions; this fact can be used to calculate
x∗OPP,0. It is easy to see from (6) that

x∗OPP(0) = Inxx
∗
OPP,0, (8)

where Inx
is the identity matrix of dimensions nx. To calculate

x∗OPP(T1), note that the three-phase pulse pattern is constant
between switching transitions. This leads to the integral of (6)
(with t = T1) becoming

f =

i=N∑
i=0

∫ t∗i+1

t∗i

eF (T1−τ) dτ Gu∗abc(t
∗
i )

= F−1
i=N∑
i=0

(
(eF (T1−t∗i ) − eF (T1−t∗i+1))Gu∗abc(t

∗
i )
)
,

where F is assumed to be invertible for convenience.2 Thus,

2In the case that F is singular, the structure of the matrix must be exploited

to solve the integral. For the singular matrix F =

[
a 0
0 0

]
, for example, the

expression
∫ t
0 eF tdt =

[
(eat − 1)/a 0

0 t

]
can be derived.
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Fig. 3: The steady-state trajectory (in pu) of the converter system resulting from the nominal pulse pattern u∗
abc (including the grid voltage).

the steady-state value at the end of the fundamental period is

x∗OPP(T1) = eFT1x∗OPP,0 + f . (9)

It is easy to show from (7) [after inserting (8) and (9)] that
the initial steady-state value resulting from the pulse pattern
is

x∗OPP,0 = (Inx − eFT1)−1f , (10)

where xOPP,0 is assumed to be unique in the steady state.3

With the initial steady-state value x∗OPP,0 known, the
steady-state trajectory x∗OPP resulting from the pulse pattern
can be calculated over the fundamental period using (6).
Typically, the steady-state trajectory x∗ is required at dis-
crete sampling instants of Ts (the sampling interval of the
controller).

Now, consider the grid voltage. The steady-state trajectory
resulting from the grid voltage can be described as

x∗g(t) = eF tx∗g,0 +

∫ t

0

eF (t−τ)Pvg(τ) dτ,

where the integral is not trivial to solve since the grid voltage is
sinusoidal. Fortunately, the effect of the grid can be calculated
using well-known phasor analysis; all the converter states
resulting from the grid voltage only consist of a fundamental
component. After calculating the effect of the grid voltage over

3This is true for most plants. However, for plants where the resistive
components are not taken into account (such as an integrator or resonator),
there is no unique trajectory since eF t will not diminish as t → ∞. If no
unique trajectory exists, then some components of x∗

OPP,0 must be treated
as free variables.

the fundamental period, the steady-state trajectory resulting
from the grid voltage can be added to that of the pulse
pattern as shown with (5). Alternatively, the effect of the grid
voltage can be considered by representing the grid voltage
as a harmonic resonator and including it as additional state
variables. Fig. 3 shows an example of a steady-state trajectory
x∗ in the abc reference frame. The parameters of the system
can be found in [4, Appendix C]. The pulse number is d = 5
and the system is operating at rated conditions with unity
power factor.

IV. SMALL-SIGNAL MODELLING OF MODIFICATIONS OF A
PULSE PATTERN

This section explains how the modifications of a pulse
pattern are modelled.

A. Overview of Small-Signal Modelling

Although no clear definition of small-signal modelling could
be found in the literature, the term, usually, refers to a
linearization of a nonlinear system around an operating point
[21, Section 3.10]. Note that small-signal modelling does not
strictly imply a linearization around a single operating point;
the system can also be linearized around a trajectory (which
is the case in this paper).

There are three types of variables associated with small-
signal modelling. The first is the complete-signal variables

ξ(t) = ξ∗(t) + ξ̃(t), (11)
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Fig. 4: Using impulses to represent rectangular pulses (that is, modifications
to a pulse pattern).

which is the sum of the large-signal variables ξ∗ and small-
signal variables ξ̃. The large-signal variables represent the
trajectory that the system is linearized around. The small-
signal quantities ξ̃ represent the linearized variables, which are
perturbations superimposed on the large-signal variables. In
this paper, the large-signal variables are the steady-state vari-
ables (the nominal pulse pattern and its resulting steady-state
trajectory), which are interpreted as references. The complete-
signal variables represent the actual (measured) values of the
system. From (11), the small-signal variables can be expressed
as

ξ̃(t) = ξ(t)− ξ∗(t), (12)

which is interpreted as an error (specifically, small-signal state
variables represent errors). A controller can be used to modify
the small-signal input in order to drive the small-signal state
variables to zero. In steady-state conditions, all small-signal
variables are zero (assuming idealized conditions).

B. Linear Approximation to Modifications of a Pulse Pattern
For the moment, only single-phase pulse patterns are con-

sidered for convenience. Before continuing, two types of pulse
patterns are introduced. The first is the reference pulse pattern,
denoted with u∗, and is referred to as the nominal pulse
pattern. The nominal pulse pattern has n switching transitions
that occur at the nominal switching instants t∗i , i = 1, . . . , n,
and can be represented as

u∗(t) = u0 +

n∑
i=1

∆uih(t− t∗i ), (13)

where h is the Heavyside (unit) step function and u0 is the
initial (nominal) switch position. The direction of a switching
transition is denoted by ∆ui = ui − ui−1, where ui−1, ui ∈
Z. The nominal pulse pattern is the offline-calculated pulse
pattern.

The second pulse pattern is called the modified pulse pat-
tern, and it is denoted with u. The modified pulse pattern
has modified switching transitions that occur at the modified
switching instants

ti = t∗i + ∆ti,

where ∆ti is the time modification. The modified pulse pattern
can be represented as

u(t) = u0 +

n∑
i=1

∆uih(t− (t∗i + ∆ti)). (14)

It can be observed in Fig. 4 that the ith switching time
modification is associated with an area of

λi = −∆ti∆ui (15)

that is removed or added to the nominal pulse pattern.
Recall that the time derivative of the step function h is the

Dirac delta function, or simply the impulse, δ. By using a first-
order Taylor series expansion of the step functions around the
nominal switching times t∗i , (14) can be approximated by

u(t) ≈ u0 +

n∑
i=1

∆ui (h(t− t∗i )−∆tiδ(t− t∗i )) ,

which can be written as4

u(t) = u0 +

n∑
i=1

∆uih(t− t∗i ) +

n∑
i=1

λiδ(t− t∗i ) (16)

with the definition of (15). The (linearized) modified pulse
pattern in (16) consists of two terms. The first one is the
nominal pulse pattern, whereas the second expression states
the (approximated) modifications. These modifications are
impulses placed at the nominal switching time instants t∗i with
strengths λi.

According to the definition of small-signal variables in (12),
the small-signal input is defined as

ũ(t) = u(t)− u∗(t)

=

n∑
i=1

λiδ(t− t∗i ). (17)

By rewriting (15), the impulse strengths can be translated
into the switching time modifications as

∆ti = − λi
∆ui

. (18)

Note that the translation from impulse strengths to switching
time modification is based on the linearization in (16). More
specifically, the areas of the (shaded) rectangular pulses in
Fig. 4 are approximated by the strengths of the impulses; the
narrower the rectangular pulses, the better the approximation.

C. The Three-Phase Case

This section generalizes the notation and techniques de-
veloped in the previous section to the three-phase case. The
modification of the ith switching instant of phase p ∈ {a, b, c}
is

∆tp,i = tp,i − t∗p,i, (19)

where tp,i and t∗p,i are the modified and nominal switching
instants, respectively. The (direction of the) ith switching
transition in a particular phase is

∆up,i = up,i − up,i−1 (20)

where up,i, up,i−1 ∈ {−1, 0, 1}. Generalizing (15), the ith
impulse strength in phase p is

λp,i = −∆tp,i∆up,i. (21)
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Fig. 5: Three-phase pulse pattern.

Consider the modified three-phase pulse pattern uabc over
the time interval t ∈ [0, Tp], where Tp is the prediction horizon
of a predictive controller. Following the principle derived in
(16), define the modified pulse pattern as the superposition

uabc(t, λp,i) = u∗abc(t) + ũabc(t, λp,i) (22)

of the three-phase nominal pulse pattern

u∗abc(t) =

ua(t)
ub(t)
uc(t)

 =

ua,0 +
∑na

i=1 ∆ua,ih(t− t∗a,i)
ub,0 +

∑nb

i=1 ∆ub,ih(t− t∗b,i)
uc,0 +

∑nc

i=1 ∆uc,ih(t− t∗c,i)


(23)

and the three-phase small-signal input

ũabc(t, λp,i) =

ũa(t, λa,i)
ũb(t, λb,i)
ũc(t, λc,i)

 =

∑na

i=1 δ(t− t∗a,i)λa,i∑nb

i=1 δ(t− t∗b,i)λb,i∑nc

i=1 δ(t− t∗c,i)λc,i

 .
(24)

In here, np is introduced as the number of switching transitions
in phase p that fall within the horizon Tp, and λp,i as the
strength of the ith impulse in that phase. Note that the nominal
switching times t∗p,i are defined relative to the current time step
t0 = 0. The total number of switching transitions in the three
phases within the horizon Tp is denoted by nsw = na+nb+nc.
In Fig. 5, for example, there are nsw = 9 switching transitions
(na = 2, nb = 4, and nc = 3).

V. THE SMALL-SIGNAL CONTROLLER

This section introduces the generalized model predictive
pulse pattern controller, which is referred to as the small-
signal controller. In a first step, as with any model predictive
controller, an internal dynamic model is first derived.

A. Internal Dynamic Model

Recall the differential equation of the power converter
system in (3). By integrating (3), and with the modified pulse
pattern uabc as the input, the future state vector at time
t ∈ [0, Tp] is

x(t, λp,i) = eF tx0 +

∫ t

0

eF (t−τ)Guabc(τ, λp,i) dτ

+

∫ t

0

eF (t−τ)Pvg(τ) dτ,

(25)

4For convenience, the approximation is replaced with an equality in the
sequel.

where x0 is the initial state at time t0 = 0. Similarly, as shown
in Section III-C, the (optimal) steady-state trajectory follows
from the nominal pulse pattern over the prediction horizon Tp
as

x∗(t) = eF tx∗0 +

∫ t

0

eF (t−τ)Gu∗abc(τ) dτ

+

∫ t

0

eF (t−τ)Pvg(τ) dτ,

(26)

where x∗0 is the initial optimal state.5

According to (12), the small-signal state vector is defined
as

x̃(t, λp,i) = x(t, λp,i)− x∗(t) (27)

which is referred to as the small-signal error; this term is
used to emphasize that the small-signal state vector represents
an error. By inserting (26) and (25) with (22) into (27), the
small-signal error follows as

x̃(t, λp,i) = eF tx̃0 +

∫ t

0

eF (t−τ)Gũabc(τ, λp,i) dτ, (28)

where x̃0 = x0−x∗0 is the initial small-signal error. It can be
observed that the grid is not part of the small-signal model.
However, the grid voltage is required when selecting the
appropriate pulse pattern according to the operating conditions.

In the case of F = 0nx×nx
(i.e. the system is a pure

integrator) and t = Tp, it can easily be verified that the internal
dynamic model of (28) reduces to that of MP3C in (1). In other
words, the proposed controller is a generalization of MP3C to
higher-order systems.

B. Compact Vector Form of the Small-Signal Error

The small-signal error (28) can be written in a compact
form. First, the small-signal input ũabc [see (24)] is decom-
posed into each phase, resulting in (28) becoming

x̃(t, λp,i) = eF tx̃0 +

∫ t

0

eF (t−τ)

(
Ga

na∑
i=1

δ(τ − t∗a,i)λa,i

+ Gb

nb∑
i=1

δ(τ − t∗b,i)λb,i +Gc

nc∑
i=1

δ(τ − t∗c,i)λc,i)
)
dτ,

(29)

where Ga = G[1 0 0]T, Gb = G[0 1 0]T, and Gc =
G[0 0 1]T. By using the well-known sifting property of the
impulse,∫ t

−∞
f(τ)δ(τ − t∗p,i) dτ = f(t∗p,i)h(t− t∗p,i),

and using basic algebraic manipulations, (29) becomes

x̃(t,Λ) = eF tx̃0 + Φ(t)Λ, (30)

5Note that x∗
0 of (26) refers to the initial state at the current time instant,

whereas x∗
0 of (4) refers to the initial state at the start of the fundamental

period.
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where Φ ∈ Rnx×nsw is the input matrix,

Φ(t) =[
eF (t−t∗a,1)Gah(t− t∗a,1) · · · eF (t−t∗a,na

)Gah(t− t∗a,na
)

eF (t−t∗b,1)Gbh(t− t∗b,1) · · · eF (t−t∗b,nb
)Gbh(t− t∗b,nb

)

eF (t−t∗c,1)Gch(t− t∗c,1) · · · eF (t−t∗c,nc
)Gch(t− t∗c,nc

)
]
,

(31)

and Λ ∈ Rnsw is introduced as the strength vector,

Λ = [λa,1 · · · λa,na
λb,1 · · · λb,nb

λc,1 · · · λc,nc
]T, (32)

with the nsw impulse strengths over the horizon Tp. As an
example, the strength vector corresponding to Fig. 5 is Λ =
[λa,1 λa,2 λb,1 λb,2 λb,3 λb,4 λc,1 λc,2 λc,3]T.

C. Objective Function

The control objectives are to minimize the small-signal error
(which relates to the tracking error) across the prediction
horizon and to penalize modifications to the nominal pulse
pattern (which relates to the control effort). These control
objectives can be mapped into a quadratic objective function
as6

J(Λ) =

∫ Tp

0

1
2‖x̃(t,Λ)‖2Q dt+ 1

2‖Λ‖2R. (33)

The first term penalizes with the positive (semi)definite di-
agonal (penalty) matrix Q ∈ Rnx×nx the integral of the
small-signal error over the prediction horizon Tp. The diagonal
(penalty) matrix R ∈ Rnsw×nsw corresponding to the penalty
on the switching modifications is also required to be positive
(semi)definite. The penalty on the control effort inhibits the
controller being overly aggressive. This is useful when mod-
elling errors (recall that modifications to a pulse pattern are
approximated and not exact) and noise (from measurement
devices and observers) are present in a system.

The objective function can be written as the quadratic
function

J(Λ) = 1
2ΛTHΛ + cTΛ, (34)

where H ∈ Rnsw×nsw is known as the Hessian and contains
the second-order partial derivatives of J , and c ∈ Rnsw is a
vector with linear coefficients. The derivation of (34) can be
found in the Appendix B.

D. Constraints

Constraints are required on the switching time modifications
to ensure a feasible pulse pattern. Specifically, the modified
switching transitions of each phase are required to be in
ascending order, nonnegative, and not moved beyond the
prediction horizon, that is,

0 ≤ tp,1 ≤ tp,2 ≤ . . . ≤ tp,np ≤ Tp (35)

for all p ∈ {a, b, c}. Alternatively, the npth switching transition
in a phase can be upper bounded by the next nominal switching

6The scaling factor of 1
2

is added to ensure the problem can be written in
standard quadratic form.

transition beyond the horizon, t∗p,np+1. Since the impulse
strengths λp,i are the decision variables, the set of constraints
(35) can be recast in terms of the impulse strengths λp,i with
the help of (19) and (21) as

0 ≤ t∗p,1−
λp,1

∆up,1
≤ t∗p,2−

λp,2
∆up,2

≤ . . . ≤ t∗p,np
− λp,np

∆up,np

≤ Tp.
(36)

Applying (36) to the phases a, b, and c, the constraint

AΛ ≤ b (37)

in matrix form arises, with A = blockdiag(Aa,Ab,Ac) ∈
R(nsw+3)×nsw and b = [bT

a b
T
b b

T
c ]T ∈ Rnsw+3, where Ap

and bp are defined in the Appendix C.

E. Quadratic Program

Minimizing the objective function (34) while respecting the
constraint (37) leads to the quadratic program (QP)

Λopt = arg min
Λ

1

2
ΛTHΛ + cTΛ (38a)

subject to AΛ ≤ b. (38b)

The strength vector Λ in (32) is the decision (or optimization)
variable, and Λopt is the optimal solution to the QP. The
latter cannot be computed algebraically; instead, numerical
optimization techniques must be employed, such as gradient
methods, active-set methods, or interior point methods.

Note that the problem (38) is convex, since the constraints
are linear and the objective function is quadratic in the decision
variable with a positive (semi)definite Hessian H . This can be
shown from the fact that penalty matricesQ andR are positive
(semi)definite.

F. Optimal Switching Instants

Having solved the QP (38), the vector of optimal impulse
strengths Λopt is translated with (21) into the optimal switch-
ing instant modifications

∆topt,p,i = −λopt,p,i

∆up,i
. (39)

By adding these modifications to the nominal switching in-
stants of the pulse pattern, the optimal switching instants are
obtained as

topt,p,i = t∗p,i −
λopt,p,i

∆up,i
, (40)

where (19) has been rewritten.

G. Receding Horizon Policy

The controller operates at discrete-time steps kTs, where
k ∈ N, and Ts is the sampling interval. Note that, even
though the controller operates at discrete-time instants kTs, the
switching instant modification is formulated in the continuous-
time domain. This implies that the modified switching instants
are real-valued quantities.

Out of the long prediction horizon, only the modified
switching instants within the current sampling interval are
applied, that is, between kTs and (k + 1)Ts. Then, at each
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k − 1 k k + 1 k + 2 k + 3

Prediction Horizon TpPast Post Horizon

Nominal OPP

Modified OPP

(a) The prediction horizon at the first sampling instant.

k − 1 k k + 1 k + 2 k + 3

Prediction Horizon TpPast

(b) The prediction horizon at the second sampling instant.

Fig. 6: The receding horizon policy.
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iabc
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x0

cH

∆topt,p,i

x∗
0

x̃0

t∗p,i

∆up,i

vg

vc,abc

P ∗

Q∗

d

ma

φ

Small-Signal
Controller

Fig. 7: Block diagram with the small-signal controller.

subsequent sampling instant, the modified switching instants
from the previous sampling instant are discarded and the
nominal switching instants are re-optimized based on new
information. This process, illustrated in Fig. 6, is known as
the receding horizon policy [22, Section 1.1], which provides
feedback and makes the controller robust to disturbances and
modelling errors.

H. Summary

The overall control diagram, with the small-signal controller
included, is shown in Fig. 7. The control algorithm consists
of the following steps:

1) The real power P ∗ and reactive power Q∗ references are
mapped into a modulation index ma and pulse pattern
phase φ, which depends on the grid voltage vg , in the
Converter Reference block via simple phasor analysis.

2) For the given modulation index ma and the selected
pulse number d, the nominal pulse pattern is read-out
from a lookup table and phase-shifted accordingly by φ
in the OPP Selector block.

3) The optimal state reference trajectory x∗ is generated
over a fundamental period in the block Reference Gen-
erator, as explained in Section III-C.

4) At a given sampling instant, the Reference Generator
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supplies the initial (reference) state x∗0.
5) The small-signal controller first calculates the initial

small-signal error, x̃0 = x0 − x∗0. Then, in the block
Construct QP, it builds the Hessian H according to
(45) and the coefficient vector c according to (48) in
Appendix B.

6) By solving the QP (38) in the Solve QP block, the
vector of optimal impulse strengths Λopt is found. The
strengths λp,i are translated back to the transition ad-
vancements and delays ∆topt,p,i, which are then added
to the nominal switching times t∗p,i of the pulse pattern to
yield the optimal (modified) switching instants topt,p,i,
in accordance with (40).

7) The switching transitions within the sampling interval
are applied by the Gating Scheduler block.

Note that Steps 1 to 3 are only required if the operating point
changes.

VI. CONCLUSIONS

The original MP3C concept in [9] was devised for first-order
systems, such as the stator winding of an electrical machine.
This paper generalized MP3C to make it applicable to higher-
order systems, such as grid-connected converters with an LC
filter. The switching instant modifications of the pulse pattern
are modified by the controller to regulate the state vector
along its optimal trajectory. Assuming that these corrections
occur instantaneously at the nominal switching instants allows
one to model the corrections as strengths of impulses. This
simplification ensures that the state dynamics are linear in
the controller corrections; the resulting optimization problem
underlying the model predictive controller is, thus, a QP.

The second part of this paper will show how the control al-
gorithm can be implemented on a low-cost field-programmable
gate array and how it is able to execute in real-time within a
short sampling interval [4].

APPENDIX A
STATE-SPACE MATRICES

The state-space matrices of the case study are

F =

−R+RC

L I2
RC

L I2 − 1
LI2

RC

Lgt
I2 −Rgt+RC

Lgt
I2

1
Lgt

I2
1
C I2 − 1

C I2 02×2

 ,
G =

Vd
2L

 I2

02×2

02×2

K, and P =
1

Lgt

02×2

−I2

02×2

 .
In here, I2 denotes the identity matrix with dimensions two,
and 02×2 is a 2× 2 zero matrix.

APPENDIX B
DERIVATION OF THE QUADRATIC FORM

Consider the two terms of the objective function, see (33).
The first term can be expanded to

J1(Λ) = 1
2

∫ Tp

0

(
eF tx̃0 + Φ(t)Λ

)T
Q
(
eF tx̃0 + Φ(t)Λ

)
dt,

= 1
2

∫ Tp

0

(
ΛTΥ(t)Λ + ΘT(t)Λ

)
dt+ θ,

= 1
2ΛT

(∫ Tp

0

Υ(t)dt︸ ︷︷ ︸
V

)
Λ +

(∫ Tp

0

ΘT(t)dt︸ ︷︷ ︸
c

)
Λ + θ,

(41)

where
Υ(t) = ΦT(t)QΦ(t), (42)

ΘT(t) = (eF tx̃0)TQΦ(t), (43)

and

θ = 1
2

∫ Tp

0

(eF tx̃0)TQ(eF tx̃0) dt. (44)

Consider the (i′, j′)th entry of the nsw × nsw matrix
V [i.e. the integral of (42)]. Assume that the i′th entry
corresponds to phase p1 ∈ {a, b, c} and the ith switching
transition in that phase. Using Fig. 5 as an example, i′ = 5
refers to p1 = b and i = 3. The quantities p2 and j are
defined accordingly for a given j′. Following some algebraic
manipulations, it can be shown that the (i′, j′)th entry of V
is

V (i′,j′) = GT
p1e

FT(t∗ij−t∗p1,i)Ξ(Tp − t∗ij) eF (t∗ij−t∗p2,j)Gp2 ,
(45)

where t∗ij = max{t∗p1,i, t∗p2,j}, and

Ξ(∆t) =

∫ ∆t

0

eF
TτQeF τ dτ. (46)

Calculating the integral of the product of two matrix exponen-
tials, which do not commute, is not trivial. Recall the following
theorem from [23]: The integral of (46) can be calculated as

Ξ(∆t) = MT(∆t)N(∆t), (47)

where

e

 −FT Q
0nx×nx

F

∆t

=e
−FT∆t

N(∆t)︷ ︸︸ ︷
e−F

T∆t

∫ ∆t

0

eF
TτQeF τ dτ

0nx×nx
eF∆t︸ ︷︷ ︸
M(∆t)

 .
Following similar derivations, it can be shown that i′th entry

of the nsw-dimensional column vector c [i.e. the integral of
(43)] is

cT
i′ = x̃T

0 e
FTt∗p,iΞ(Tp − t∗p,i)Gp. (48)

Note that θ in (41) is not a function of the strength
vector Λ. Therefore, it is merely a constant in the objective
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function, which has no influence on the solution of the to-be-
derived optimization problem. This fact allows θ to be omitted
hereafter.

The first term of the objective function, J1, which minimizes
the small-signal error, can now be written as

J1(Λ) =
1

2
ΛTV Λ + cTΛ. (49)

The second term of the objective function (33), which
penalises the entries of the strength vector Λ, is simply

J2(Λ) =
1

2
ΛTRΛ. (50)

The objective function can now be written in its standard
quadratic form as

J(Λ) = J1(Λ) + J2(Λ) =
1

2
ΛT(V +R)Λ + cTΛ

=
1

2
ΛTHΛ + cTΛ. (51)

APPENDIX C
MATRIX FORM OF CONSTRAINTS

The matrix Ap ∈ R(np+1)×np and vector bp ∈ Rnp+1 are
defined as

Ap =



1
∆up,1

0 0 · · · 0 0

− 1
∆up,1

1
∆up,2

0 · · · 0 0

0 − 1
∆up,2

1
∆up,3

· · · 0 0
...

. . .
...

...
0 0 0 · · · − 1

∆up,np−1

1
∆up,np

0 0 0 · · · 0 1
∆up,np


and

bp =
[
t∗p,1 t∗p,2 − t∗p,1 · · · Tp − t∗p,np

]T
,

respectively.
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