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Abstract—This paper proposes a model predictive controller
for high-power modular multilevel converter operating at low
switching frequencies. The controller regulates the load cur-
rents along their reference trajectories, controls the circulating
currents and controls the sum of the capacitor voltages per
branch. Upper limits on the branch currents and capacitor
voltages are imposed in the controller formulation. The controller
manipulates the voltage references of a carrier-based pulse width
modulator. A subsequent balancing controller maintains the
capacitor voltages within each branch around their average
voltage. Unlike hierarchical schemes based on multiple PI control
loops, the proposed controller achieves not only a very good
performance at steady-state operation but also very fast current
responses during load transients, while maintaining the branch
currents and capacitor voltages within their safe operating limits.

I. INTRODUCTION

The modular multilevel converter (MMC) topology has
lately received significant interest in the area of medium-
voltage power electronics [1]. The series-connection of module
capacitors allows for a scaling of the output voltages and
the number of output voltage levels. Increasing the latter is
beneficial from a line current total harmonic distortion (THD)
point of view, since the THD can be kept within acceptable
limits even when operating at very low switching frequencies.
These properties make the MMC topology well suited for a
variety of high-power applications, such as high-voltage direct-
current (HVDC) transmission, high-power medium-voltage
motor drives and static VAR compensators (STATCOM).

The control and modulation problem of the MMC is to
regulate the load currents around their time-varying references,
to balance the capacitor voltages around their nominal values,
to minimize the converter and switching losses, and to meet
harmonic requirements of the load, most notably a low current
THD. The MMC must be operated within its safe operating
limits, particularly with regard to the branch current and
capacitor voltages. Due to the multiple-input multiple-output
structure of the converter and its various internal dynamics,
this control problem is intrinsically difficult to address. The
vast majority of control methods proposed so far for MMCs
is based on hierarchical schemes with multiple PI control loops
and pulse width modulators (PWM) [2]–[5].

Hierarchical schemes with multiple PI control loops tend to
perform poorly when fast dynamics during transient operation
are required or when operating at low switching frequencies.

Therefore, the power electronics community has started to in-
vestigate the concept of modern control methods formulated in
the time domain, most notably model predictive control (MPC)
[6]. According to the MPC philosophy, a performance index
is minimized subject to the evolution of a dynamical model
over a finite-time horizon and constraints on the manipulated
variables, states and outputs. The use of a discrete-time state-
space model allows MPC to predict the future behavior of
the plant and to optimize its control actions accordingly [7].
The literature on MPC schemes for the MMC topology is
scarce and restricted to direct MPC methods that do not use
a modulator [8]–[11].

This paper proposes a PWM-based model predictive current
controller (MPCC) for the MMC. It appears to be the first
MPC scheme in the literature that uses a PWM. A prediction
horizon of five to 10 steps is used. The underlying optimization
problem is a quadratic program (QP), which can be solved
efficiently using off-the-shelf solvers. The control problem
is formulated in a hierarchical manner. The MPCC scheme
constitutes the upper layer; it provides voltage references to
the subsequent PWM and the balancing control algorithm on
the lower layer.

The MPCC scheme provides optimal control actions both
at steady-state operation as well as during transients, such as
power up, load steps and faults. Due to the ability of MPC
to address constraints, the proposed controller achieves fast
transient responses while respecting the imposed constraints
on the branch currents and capacitor voltages, thus ensuring
that the converter operates under safe conditions even during
transient operation. This stands in stark contrast to the tradi-
tionally used hierarchical controllers with multiple PI loops,
see e.g. [3].

The proposed MPCC scheme is formulated independently
of the number of modules per branch. The use of a PWM
modulator ensures an effectively constant switching frequency
and a clearly defined harmonic spectrum of the load currents.
These features along with the low device switching frequency
of a few 100 Hz that the MPC scheme can operate at, make
the developed framework suitable for high-power MMC ap-
plications.

II. PHYSICAL MODEL OF THE MMC

A. Topology

The investigated MMC topology is shown in Fig. 1. Each
phase leg p ∈ {a, b, c} of the converter is divided into two
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Fig. 1. Three-phase dc-ac MMC topology with unidirectional modules

branches. Each branch r ∈ {1, . . . , 6} consists of N modules
Mrj , with j ∈ {1, . . . , N}, and the branch inductor L. The
conduction losses of each branch are modeled by the resistor
R.

Each module consists of the capacitor Cm with the voltage
vrj and two IGBTs that form a half bridge. The IGBTs are
driven by the gating signals SrjB and SrjT , which refer to
the bottom and the top IGBT of the jth module in the rth
branch. The switching behaviour of the module Mrj can be
described using two states: (a) the on-state (i.e SrjT = on and
SrjB = off), in which the capacitor Cm is connected to the
branch and the terminal voltage of the module is vrj , and (b)
the off-state (i.e SrjT = off and SrjB = on), in which the
module is bypassed.

The inductor Ldc and the resistor Rdc are connected in
series to the dc supply voltage Vdc, which model the parasitic
inductance and resistance, respectively. The three-phase output
terminals of the MMC are connected to the load, which
consists of the load inductor Lg in series with the load resistor

Rg and the grid voltage vgp.

B. Modeling of the MMC

For each branch r we define the insertion index nr ∈
{0, 1

N , 2
N , . . . , 1}, where nr = 1 means that all N modules

in the branch are inserted and nr = 0 that all N modules in
the branch are bypassed [2]. When assuming that all modules
have the same capacitance and that the capacitor voltages are
balanced [12], the series-connection of the modules inserted
in branch r can be described by the (time-varying) branch
capacitance

Cr =
1

nr

Cm

N
(1)

with the voltage

vcr = nrv
Σ
r . (2)

The second term in (2) is the sum of all capacitor voltages
of branch r (regardless of whether the module is inserted into
the branch or not), which is defined as

vΣr =

N∑
j=1

vrj . (3)

Moreover, the evolution of vΣr is a function of the branch
current ir and the inserted branch capacitance Cr, i.e.

dvΣr
dt

=
ir
Cr

=
N

Cm
nrir , (4)

For a sufficiently large number of modules and/or a high
switching frequency, the insertion index nr can be considered
to be a real-valued variable nr ∈ [0, 1]. This allows the
derivation of a nonlinear continuous-time dynamical model of
the MMC with real-valued variables. The inputs to the system
are the insertion indices nr of the six branches r ∈ {1, . . . , 6}.
Since there are five linearly independent currents, we choose
as state variables the branch currents of phase legs a and b (i.e
ir with r ∈ {1, . . . , 4}), the dc-link current idc, the sums of
the capacitor voltages vΣr of the six branches r ∈ {1, . . . , 6}
and the grid voltages vgα, vgβ in the orthogonal αβ coordinate
system. The outputs of the model are the load currents iα, iβ
in the orthogonal coordinate system, along with the six sums
of capacitor voltages per branch vΣr .

The state-space equations of the five independent currents
can be easily derived by applying Kirchoff’s voltage law to the
five circuit meshes EADGE, EBDGE, ECDGE, DAMBD and
DAMCD. The differential equations of the sum of capacitor
voltages per branch vΣr are given by (4). The evolution of the
grid voltages in the αβ frame is given by

d

dt

[
vgα

vgβ

]
= ω

[
0 −1

1 0

][
vgα

vgβ

]
, (5)

where ω = 2πf0 is the grid rotational speed, with f0 being
the electrical frequency of the grid.
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III. CURRENT CONTROL

A. Control Problem

For the MMC topology, a controller is to be developed that
regulates the output load currents along their time-varying
sinusoidal references, maintains the capacitor voltages close
to their nominal values, and minimizes the device switching
losses. Furthermore, the branch currents and the capacitor
voltages are to be kept within given bounds, which are due
to physical limitations of the switching devices and passive
components.

The performance of the proposed controller is evaluated at
steady-state operation and during transients. At steady state,
the load current THD and the device switching frequency
of the branch modules serve as performance metrics. During
transient operation, the dynamic response of the converter is
used as metric. To this end, quantities such as the overshoot,
rise and settling time of a step response are examined.

B. Control Structure

To address the control problem of the MMC, a hierarchical
control scheme with three levels is proposed, as depicted in
Fig. 2. At the top level, an MPC scheme is devised that
controls the load currents and the total energy per branch.
By minimizing a quadratic cost function subject to constraints
and the evolution of a linearized and real-valued state-space
model of the MMC, the MPC scheme determines the optimal
real-valued insertion index nr for each of the six branches.
Using (2) the insertion index nr is translated into real-valued
voltage references.

At the middle level, using a carrier-based multilevel PWM,
these voltage references are translated into the six integer
variables Nr, which denote the number of modules to be

inserted per branch. At the lower layer, each branch uses an
independently operating controller that utilizes the redundancy
within that branch to balance the capacitor voltages, by decid-
ing on the gating commands for the individual modules.

C. Model Predictive Current Control

The MPCC scheme, as developed and implemented in this
paper, is based on the principle of constrained optimal control.
At each sampling instant k an optimization problem is formu-
lated and solved in real time. The resulting sequence of control
inputs U =

[
uT (k),uT (k + 1), . . . ,uT (k +Np − 1)

]T over
the prediction horizon Np minimizes an objective function
subject to the evolution of the system model and constraints.
Only the first input u(k) is applied to the system, and the
process is repeated at the next sampling instant k + 1 in
accordance with the so called receding horizon policy [7]. The
MPCC scheme is based on a linearized model of the nonlinear
MMC system.

D. Linearized Prediction Model

According to the analysis in Section II, the state-space
equations describing the dynamical behavior of the MMC
contains the nonlinear terms nrv

Σ
r and nrir. At time t = t0,

a first order Taylor series expansion of the above nonlinear
terms around the current operating point of the system, which
is given by nr(t0), vΣr (t0) and ir(t0), can be performed.

nr(t)v
Σ
r (t) = nr(t0)v

Σ
r (t) + vΣr (t0)Δnr(t) (6a)

nr(t)ir(t) = nr(t0)ir(t) + ir(t0)Δnr(t) (6b)

where Δnr(t) = nr(t) − nr(t0) is the modification in the
insertion index.

The resulting linearized continuous-time prediction model
is of the form:

dx(t)

dt
= Ac(t0)x(t) +Bc(t0)u(t) + f c(t0) (7a)

y(t) = Ccx(t) (7b)

with the state, input and output vectors

x =
[
i1 . . . i4 idc vΣ1 . . . vΣ6 vgα vgβ

]T
(8a)

u = [Δn1 . . .Δn6]
T (8b)

y = [iα iβ vΣ1 . . . vΣ6 ]
T (8c)

Note that x ∈ R
13, u ∈ [−n1(t0), 1 − n1(t0)] × . . . ×

[−n6(t0), 1 − n6(t0)] ∈ R
6 and y ∈ R

8. The time-varying
matrices and vectors Ac(t0), Bc(t0), f c(t0) and Cc are
provided in the Appendix.

Using Euler’s exact discretization method with the sampling
interval Ts, the discrete-time representation of the linearized
model can be derived.

x(k + 1) = Ad(t0)x(k) +Bd(t0)u(k) + fd(t0) (9)
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E. Objective Function and Constraints

The objective function maps the control objectives into a
scalar performance index. The proposed objective function
consists of two parts. The first part penalizes the predicted
evolution of the tracking error and the change in the manipu-
lated variable over the prediction horizon Np

J1(x(k),u(k − 1),U) (10)

=

k+Np−1∑
�=k

‖Q(y∗(�)− y(�))‖22 + λu‖RΔu(�)‖22

The matrix Q penalizes the tracking error, and y∗(�) denotes
the time-varying reference vector

y∗(�) = [i∗α(�) i
∗
β(�) Vdc · I1×6]

T . (11)

Changes Δu(�) = u(�)−u(�−1) in the (linearized) insertion
index are penalized with the matrix R. Penalizing changes in
the manipulated variable rather than the manipulated variable
itself is preferred, since time-varying reference quantities are
to be tracked. Nota that since the trade-off between tracking
accuracy and control effort is determined by the ratio between
Q and R, R can be set equal to the identity matrix.

A considerable advantage of the proposed control frame-
work is its ability to address constraints during the controller
synthesis. These constraints result from the operation princi-
ples of the converter, and can be categorized either as hard
or soft constraints. Hard constraints relate to strict physical
limitations of the converter, such as limits on the modulation or
bounds on the safe operating range. The latter directly relate to
trip levels. Hard constraints are added as inequality constraints
to the optimization problem and limit the admissible state-
input space. Hard constraints might lead to feasibility issues.

Soft constraints can be imposed within the admissible state-
input space to restrict the operation of the MMC close to the
limits of the safe operating range. Unlike hard constraints, soft
constraints are added to the objective function using the notion
of slack variables. A slack variable ξ maps the violation of a
soft constraint into a non-negative real number, i.e. ξ : R →
R+.

The insertion index nr of the rth branch is limited by the
hard constraint

0 ≤ nr(�) ≤ 1 . (12)

As shown in Fig. 3, soft constraints on the branch current
ir can be added. Specifically, upper and lower constraints at
ī and −ī are introduced using the slack variable ξr and the
three inequality constraints

ξr(�) ≥ ir(�)− ī (13a)

ξr(�) ≥ −(
ir(�) + ī

)
(13b)

ξr(�) ≥ 0 . (13c)

Similarly, an upper soft constraint at v̄ can be imposed
on the sum of capacitor voltages per branch vΣr (c.f. Fig. 4)

ξr

ir0 ī−ī

Fig. 3. Upper and lower soft constraints on the rth branch current ir using
the slack variable ξr

ζr

vΣr0 v̄

Fig. 4. Upper soft constraint on the sum of capacitor voltages vΣr of the rth
branch using the slack variable ζr

by introducing the slack variable ζr and the two inequality
constraints

ζr(�) ≥ vΣr (�)− v̄ (14a)
ζr(�) ≥ 0 . (14b)

By aggregating the slack variables in the two vectors

ξ =
[
ξ1 . . . ξ6

]T ∈ R
6
+ (15a)

ζ =
[
ζ1 . . . ζ6

]T ∈ R
6
+ , (15b)

the second part of the objective function can be written as

J2(x(k),u(k − 1),U) (16)

=

k+Np−1∑
�=k

λξ‖ξ(�)‖1 + λζ‖ζ(�)‖1

in which the slack variables are penalized using the 1-norm
and the scalar penalties λξ and λζ .

F. Optimization Problem

This leads to the optimization problem

Jopt = min
U

J1 + J2 (17)

subject to (9), (12), (13), (14) ∀� = k, . . . , k +Np − 1

As the cost function is quadratic subject to the evolution of
a linear state-space model with linear inequality constraints,
the resulting optimization problem (17) constitutes a so-called
quadratic program (QP). The QP can be formulated and solved
efficiently, e.g. by using an active set method or an interior
point method. The result of the optimization stage is the
sequence of optimal control inputs U = [uT (k) uT (k +
1) . . .uT (k +Np − 1)]T at time step k.
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The first element of the sequence of optimal control inputs
is implemented at time-step k and sent to the PWM. At
the next time-step k + 1, new measurements are obtained
and the optimization problem is solved again over a shifted
prediction horizon. This so called receding horizon policy
provides feedback and ensures that the controller is robust
to parameter uncertainties.

G. Multilevel Pulse Width Modulation

The middle level of the hierarchical control scheme (c.f.
Fig. 2) executes the carrier-based PWM. The insertion index
nr can be interpreted as the modulation index of a multilevel
PWM scheme, as developed and implemented in [13]. The
PWM translates the real-valued reference voltage into the
integer Nr, which relates to the number of modules to be
inserted to the rth branch.

H. Balancing Control

The lower control layer utilizes the redundancy in the
converter states to balance the capacitor voltages within the
branches. Each branch uses its own balancing controller, which
receives as input from the modulation stage the number of
modules Nr to be inserted into the branch r. The controller
computes the switching signals for the N modules, namely the
gating signals SrjB and SrjT for the bottom and top IGBTs
in the jth module.

The balancing algorithm consists of three parts. In part A,
two separate and mutually exclusive lists, namely ”List ON”
and ”List OFF”, are established according to the current state
of the modules in the branch. Denoting by NON and NOFF the
number of modules contained in ”List ON” and ”List OFF”,
respectively, it holds that NON +NOFF = N .

Parameter p.u. value SI value
Output frequency f0 1 50 Hz
Dc supply voltage Vdc 2.1916 6.8 kV
Grid rms voltage Vll 1.2247 3.8 kV
Load rms current Ip 0.7071 650 A
Capacitance Cm 8.6951 8.2 mF
Dc supply resistance Rdc 0.00003 100 μΩ

Branch resistance R 0.000074 250 μΩ

Load resistance Rg 0.02 67.5 mΩ

Dc supply inductance Ldc 0.0047 50 μH
Branch inductance L 0.0931 1 mH
Load inductance Lg 0.15 1.6 mH

TABLE I
MMC SYSTEM PARAMETERS

In part B, the modules of each list are sorted in an ascending
or descending order of their capacitor voltage values, depend-
ing on the polarity of the respective branch current. Finally, in
part C, the module selection is performed. ”List ON” is always
prioritized and only if Nr > NON then Nr − NON modules
of ”List OFF” are switched on. In case that Nr ≤ NON
then NON −Nr modules of ”List ON” are switched off. The
balancing algorithm is graphically presented in Fig. 5.

IV. PERFORMANCE EVALUATION

A. Simulation Parameters

To demonstrate the performance of the proposed MPC
scheme, consider a three-phase 4.28 MVA medium-voltage
MMC with N = 8 modules per branch, operating in dc-
ac inverter mode with its input connected to a 6.8 kV dc
supply. The MMC parameters are summarized in Table I. The
per unit (p.u.) system is established using the base voltage
VB =

√
2/3Vll = 3.10 kV, the base current IB =

√
2Ip =

919.24 A and the base frequency fB = 50 Hz.
A regularly-sampled multilevel carrier-based PWM with

phase disposition is used with a carrier frequency of
2.5 kHz [14]. Consistent with the modulation scheme, for
each branch, the different triangular carrier waveforms are not
interleaved. A phase shift of 180 degrees is applied between
the carrier waveforms of the upper and lower branches. The
MMC, load, MPC scheme, PWM and balancing controller
were implemented in Matlab/Simulink and PLECS.

B. MPC Settings

The MPCC scheme is executed at the peaks of the triangular
carrier, i.e. every 200μs. The state vector x is assumed to
be available to the controller along with the time-varying
reference signal y∗. Measurement and computational delays
are assumed to be fully compensated. The computed control
actions are kept constant between time steps k and k+ 1 and
sent to the multilevel PWM stage.

For the objective function, the penalties

Q =

[
10 · I2×2 02×6

06×2 I6×6

]
, R = I6×6 and λξ = λζ = 105
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Fig. 6. Three-phase load currents at steady-state operation

are chosen. The soft constraints are activated at ī = 1.1 p.u.
and v̄ = 1.2Vdc.

The choice of the prediction horizon Np requires care. On
the one hand, due to some slow dynamics in the MMC, a
relatively long prediction horizon is required to ensure a good
steady-state performance. On the other hand, as open-loop
verification experiments show, the linearized prediction model
tends to be inaccurate when predicting more than 5 ms into the
future. Moreover, the computational burden of the optimization
problem directly depends on the prediction horizon. Based on
the above considerations, a prediction horizon of Np = 6 was
chosen.

The QP in (17) has at each time-step six input and 12 slack
variables; for the horizon Np = 6 this leads to an optimizer
of dimension 108. The Multi-Parametric Toolbox 3.0 [15] and
the Gurobi Optimizer [16] were used to formulate and solve
the QP problem.

C. Closed Loop Evaluation

1) Steady-State Performance: At full load, the performance
of the control scheme is evaluated at steady-state operating
conditions. The three-phase load currents are shown in Fig. 6
over two fundamental periods. The MPC scheme regulates
the load currents closely along their references. Over a time
window of 100 ms, three performance metrics are computed.
The mean square error (MSE) is 6 · 10−5 p.u., the THD of
the load current is 0.55%, and the average device switching
frequency is 375 Hz.

The operation of the lower layer balancing algorithm can be
observed in Fig. 7, which shows the voltage waveforms over
two fundamental periods. The capacitor voltages are balanced
within 10% of their nominal value. The visible differences in
the capacitor voltages are due to the low switching frequency.
The soft constraints on the total capacitor voltages along with
the balancing control algorithm keep the capacitor voltages
within acceptable bounds.

The soft constraints on the branch currents, which are
imposed by the operational limits of the converter, are met by
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Fig. 7. Capacitor voltages of the N modules of the top and bottom branch,
respectively, of the phase leg a at steady-state operation
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Fig. 8. Branch current of the top and bottom branch, respectively, of the
phase leg a at steady-state operation

the control scheme. As shown in Fig. 8, the branch currents
remain within their predefined bounds of −1.1 to 1.1 p.u..
Furthermore, by comparing the waveforms of the upper and
lower branch currents of one phase leg (e.g. i1 and i2), we
can also infer that the magnitudes of the circulating currents
are small. This reduces the conduction losses in the converter.

2) Transient Performance: To investigate the dynamic be-
haviour of the system, the converter is initially operated at
rated load current before the reference of the load currents is
changed to zero at t = 110 ms. At t = 130 ms, the load
current reference is changed back to 1 p.u.. The resulting
dynamic response of the three-phase load current is shown in
Fig. 9. The MPCC scheme achieves very fast current responses
without overshoots. For the negative step, when sufficient
voltage margin is available, the current transient requires about
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Fig. 10. Capacitor voltages of the N modules of the top and bottom branch,
respectively, of the phase leg a during load steps

0.5 ms; to increase the current from zero to rated current takes
less than 3 ms, which is an impressive result.

It is also important to note that the capacitor voltages, as
shown in Fig. 10, are well balanced throughout the transient
events. Due to the inherent ability of MPC to impose and
meet constraints on variables, the capacitor voltages are kept
within their given bounds even during these relatively extreme
transient events, not exceeding their safe operating limits.
In fact, the maximum and minimum values of the capacitor
voltages during the transients are comparable to the ones at
steady-state operation.

The ability of the MPCC scheme to respect the constraints
is also visible when analyzing the branch currents, which are
shown in Fig. 11 during the transients. It can be seen that the
controller effectively ”clamps” the branch current to 1.1 p.u.
during parts of the transient. This is a significant achievement

110 115 120 125 130 135 140 145 150

−1

0

1

110 115 120 125 130 135 140 145 150

−1

0

1

Time (ms)

i 1
i 2

Fig. 11. Branch current of the top and bottom branch, respectively, of the
phase leg a during load steps

by the controller, since the second-order energy exchange
between the branch inductors and module capacitors must be
controlled in a considerate manner to avoid any overshoot in
the capacitor voltages and branch currents.

V. CONCLUSIONS

A model predictive current control (MPCC) scheme with a
PWM was proposed in this paper for the MMC topology. This
versatile control approach is applicable to any MMC regardless
of its circuit parameters, phase configuration and number of
modules. The controller is conceptually simple with an easy
to devise objective function, a linearized converter model
based on first principles and constraints on the main physical
quantities. The underlying optimization problem is a quadratic
program (QP), which can be solved efficiently using off-the-
shelf solvers. Unlike traditional control schemes with multiple
PI loops, the design effort is low, but the computational effort
is relatively high, requiring a dedicated QP solver running on
a DSP or FPGA.

Due to its ability to address the MMC as a multiple-input
multiple-output (MIMO) problem with operating constraints,
MPCC outperforms most of the existing control approaches
for the MMC, particularly during transients. Very fast re-
sponses close to the physical limits of the MMC are achieved
Overshoots in the capacitor voltages and the branch currents
are avoided, and the operation of the converter within safe
operating limits is ensured under all circumstances. At steady-
state operation, a very low current THD of about 0.5% is
achieved, while operating the IGBTs at a low switching
frequency of less than 400 Hz.

VI. APPENDIX

The time-varying matrices and vectors Ac(t0), Bc(t0),
fc(t0) and Cc of the linearized continuous-time state-space
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model (7) are given by

Ac(t0) =

⎡
⎢⎣A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎥⎦ Bc(t0) =

⎡
⎢⎣B1

B2

B3

⎤
⎥⎦

fc(t0) =

⎡
⎢⎣f1f2
f3

⎤
⎥⎦ Cc =

[
C1 C2 C3

]

where

A11 = T−1F, A12 = T−1M, A13 = T−1HK

A21 =
N

Cm

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

n1(t0) 0 0 0 0

0 n2(t0) 0 0 0

0 0 n3(t0) 0 0

0 0 0 n4(t0) 0

−n5(t0) 0 −n5(t0) 0 n5(t0)

0 −n6(t0) 0 −n6(t0) n6(t0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

A22 = 06×6, A23 = 06×2, A31 = 02×5

A32 = 02×6, A33 = ω

[
0 −1

1 0

]

B1 = T−1G

B2 =
N

Cm

diag(i1(t0) i2(t0) i3(t0) i4(t0) i5(t0) i6(t0)), B3 = 02×6

i5(t0) = (idc(t0) − i1(t0) − i3(t0)) , i6(t0) = (idc(t0) − i2(t0) − i4(t0))

f1 = T−1Λ, f2 = 06×1, f3 = 02×1

C1 =

[
C11

C12

]
, C2 =

[
C21

C22

]
, C3 =

[
C31

C32

]

C11 = Ki

⎡
⎢⎣ 1 −1 0 0 0

0 0 1 −1 0

−1 1 −1 1 0

⎤
⎥⎦ , C12 = 06×5

C21 = 02×6, C22 = I6×6

C31 = 02×2, C32 = 06×2

Ki =
2

3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]

T =

⎡
⎢⎢⎢⎢⎢⎣

L L 0 0 Ldc

0 0 L L Ldc

−L −L −L −L Ldc + 2L

Lg −(L+ Lg) −Lg L + Lg 0

2Lg −2(L + Lg) Lg −(L + Lg) L

⎤
⎥⎥⎥⎥⎥⎦

G =

⎡
⎢⎢⎢⎢⎢⎣

−vΣ
1 (t0) −vΣ

2 (t0) 0 0 0 0

0 0 −vΣ
3 (t0) −vΣ

4 (t0) 0 0

0 0 0 0 −vΣ
5 (t0) −vΣ

6 (t0)

0 vΣ
2 (t0) 0 −vΣ

4 (t0) 0 0

0 vΣ
2 (t0) 0 0 0 −vΣ

6 (t0)

⎤
⎥⎥⎥⎥⎥⎦

M =

⎡
⎢⎢⎢⎢⎢⎣

−n1(t0) −n2(t0) 0 0 0 0

0 0 −n3(t0) −n4(t0) 0 0

0 0 0 0 −n5(t0) −n6(t0)

0 n2(t0) 0 −n4(t0) 0 0

0 n2(t0) 0 0 0 −n6(t0)

⎤
⎥⎥⎥⎥⎥⎦

F =

⎡
⎢⎢⎢⎢⎢⎣

−R −R 0 0 −Rdc

0 0 −R −R −Rdc

R R R R −(Rdc + 2R)

−Rg R + Rg Rg −(R + Rg) 0

−2Rg 2(R + Rg) −Rg R + Rg −R

⎤
⎥⎥⎥⎥⎥⎦

H =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

−1 1 0

−1 0 1

⎤
⎥⎥⎥⎥⎥⎦ , K =

⎡
⎢⎣

1 0

− 1
2

√
3

2

− 1
2 −

√
3

2

⎤
⎥⎦ , Λ =

⎡
⎢⎢⎢⎢⎢⎣

Vdc

Vdc

Vdc

0

0

⎤
⎥⎥⎥⎥⎥⎦
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