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Abstract—For medium voltage AC drives, model predictive
direct torque control (MPDTC) shows excellent performance
characteristics regarding the switching frequency and the har-
monic distortion of the torque and the stator currents, outper-
forming classic control schemes, such as direct torque control
and field oriented control. Besides these advantages, the MPDTC
algorithm runs occasionally into so called deadlocks, in which
no suitable voltage vector exists. Even though an exit strategy
is available to resolve these situations, deadlocks tend to cause
spikes in the instantaneous switching frequency and impact the
overall performance of MPDTC. This paper focuses on new
methods to avoid such deadlocks, using terminal constraints and
terminal weights. The proposed methods greatly reduce—and in
many cases completely avoid—deadlocks. Moreover, a significant
reduction of the switching frequency and the harmonic distortion
is observable in the case of a five-level topology.

Index Terms—Model predictive direct torque control, model
predictive control, medium-voltage drives

I. INTRODUCTION

The increasing computational power available today facili-
tates the application of model predictive control (MPC) [1] to
power electronic systems [2], [3], where the sampling intervals
are typically below 100μs. Two different ways of using MPC
for power electronics can be observed. In a first approach, the
current control loop of field oriented control [4] is replaced by
MPC while keeping the modulator [5]. In a second approach,
also the task of the modulator is accomplished by the MPC
algorithm, which manipulates the inverter switch positions
directly and refrains from using a modulation scheme. This
approach leads to the concept of predictive current control,
see e.g. [6] and [7], and model predictive direct torque control
(MPDTC) [2], [8], [9]. MPDTC can be considered as an
advancement of direct torque control (DTC) [10], in which
the look-up table is replaced by an online optimization stage.
Specifically, the electromagnetic torque, stator flux magnitude
and inverter states are kept within their respective bounds,
while the switching frequency of the inverter is minimized.

Besides MPDTC’s significant performance improvements
regarding the switching frequency, switching losses and har-
monic distortion when compared to classic DTC [9], the
MPDTC algorithm tends to run occasionally into infeasible
states, so called deadlocks [11]. These deadlocks occur for
combinations of stator and rotor flux vectors, inverter states
and hysteresis bounds, for which no sequence of inverter
switch positions exists that keeps the controlled variables
within their respective bounds.
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In case of a deadlock, one option is to relax the hysteresis
bounds and to minimize the predicted violation of the hystere-
sis bounds rather than the switching frequency [11]. This so
called infeasibility exit strategy is executed until the deadlock
has been resolved. However, the execution of this exit strategy
often leads to a spike in the instantaneous switching frequency,
to which we refer as a switching burst. In the worst case, such
switching bursts could lead to a trip of the drive.

This paper proposes new methods that aim at avoiding
deadlocks and thus the triggering of the infeasibility exit
strategy. The proposed methods are based on the notion of
terminal weights and terminal constraints [1]. As a result, the
occurrence of deadlocks is drastically reduced and in many
cases avoided altogether, as demonstrated for a three-level
neutral point clamped (NPC) inverter. In addition to that, for a
five-level topology [12], significant reductions of the switching
frequency as well as of the harmonic distortions of the torque
and stator currents are also achieved.

II. MODEL PREDICTIVE DIRECT TORQUE CONTROL

MPDTC was proposed in [2], presented in detail in [8] and
[11], and generalized in [9]. This section provides a brief sum-
mary of the MPDTC approach based on the aforementioned
literature and the notation used therein. The drive system
initially used as a case study is assumed to consist of a three-
level NPC inverter [13] with a medium-voltage squirrel-cage
induction machine. The neutral point (NP) potential of the
inverter floats. Fig. 1 shows the topology of the inverter.

A. Prediction Model

The prediction model is formulated in the stationary or-
thogonal αβ coordinate system. The model’s state vector is
defined as x = [ψsα ψsβ ψrα ψrβ vn]

T , with ψsα and ψsβ

denoting the α and β-components of the stator flux linkage,
while ψrα and ψrβ refer to the components of the rotor flux.
The potential of the NP is given by vn.

The three-phase switch positions ua, ub, uc constitute the
input vector u = [ua ub uc]

T ∈ {−1, 0, 1}3. The elec-
tromagnetic torque Te, the stator flux magnitude Ψs =
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Fig. 1: NPC inverter driving an induction machine (IM)
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Fig. 2: Steady-state operation at nominal speed and torque of MPDTC for a NPC inverter with a medium-voltage induction machine. The switching horizon
is ’SSE’ and the switching frequency is minimized.√
ψ2
sα + ψ2

sβ and the NP potential vn form the output vector

y = [Te Ψs vn]
T .

Combining the standard dynamical motor model of an
induction machine with the model of the NP potential, as
presented in Sect. II of [8], and using the forward Euler
approximation approach, a discrete-time drive model in state-
space form can be derived, which is of the form

x(k + 1) = Ax(k) +Bu(k) (1)

y(k) = g(x(k)) (2)

and uses the sampling interval Ts = 25μs. The definition of the
matrices A and B and vector g can be found in the appendix
of [8].

B. Optimization Problem

The control problem is to keep the machine’s torque and
stator flux magnitude as well as the inverter’s NP potential
within given (hysteresis) bounds around their respective ref-
erences. The switching losses in the semiconductors are to be
minimized. An indirect way of achieving this is to minimize
the device switching frequency1.

Writing the above control problem as a closed-form opti-
mization problem leads to

J∗(x(k),u(k − 1)) = min
U(k)

(
Jsw + Jt

)
(3a)

s. t. x(� + 1) = Ax(�) +Bu(�) (3b)

y(�+ 1) = g(x(�+ 1)) (3c)

y(�+ 1) ∈ Y (3d)

u(�) ∈ U , ||Δu(�)||∞ ≤ 1 (3e)

∀� = k, . . . , k +Np − 1 , (3f)

with J∗ denoting the minimum of the objective function
J = Jsw + Jt. The first term of J captures the instantaneous
switching frequency

Jsw =
1

Np

k+Np−1∑
l=k

‖Δu(�)‖1 (4)

with Δu(�) = u(�) − u(� − 1). The second term Jt is an
optional term that will be introduced in Sect. IV.

The lower and upper bounds on the controlled variables
form the set Y = [T e, T e]×[Ψs,Ψs]×[vn, vn], where T e (T e)

1Alternatively, the switching losses can be directly targeted [9].

refers to the lower (upper) torque bounds. The bounds on the
stator flux magnitude and NP potential are defined accordingly.

The constraint (3e) limits the control input u to the integer
values U = {−1, 0, 1}3 available for the three-level inverter.
Switching in a phase by more than one step up or down is not
allowed to avoid a shoot-through. This restriction is enforced
by the second constraint in (3e), ||Δu(�)||∞ ≤ 1, which limits
the elements in Δu to ±1. These constraints have to be met at
every time-step � within the prediction horizon. The sequence
of control inputs U(k) = [u(k), . . . ,u(k + Np − 1)] over
the prediction horizon Np represents the sequence of inverter
switch positions the controller decides upon. The objective
function (3a) is to be minimized for all U(k) subject to the
dynamical evolution of the drive (3b), its outputs (3c) and the
constraints (3d) and (3e).

C. MPDTC Algorithm

An important part of the MPDTC algorithm is the so called
switching horizon, which consists of a certain chronological
order of switching events ’S’ and extrapolation steps ’E’. In
the case of the switching horizon ’SSE’, for example, the
algorithm has the freedom to switch the input vector u at
time-steps k and k+1 (’SS’) with respect to (3e). Thereafter,
the second input vector u(k+1) is locked in and the controlled
variables y are extrapolated (’E’) for as long as the constraints
(3d) are satisfied. The time-instant (3d) is violated defines
the length of the prediction horizon Np. As a result, Np is
not of fixed length as it is common for MPC, but varies
with the switching sequences. Based on the switching horizon
and the constraints defined in (3), the MPDTC algorithm
establishes all feasible switching sequences U(k) together
with their corresponding costs J and selects the sequence with
the minimal cost.

A detailed description of the generalized MPDTC algorithm
can be found in Sect. III of [9]. Fig. 2 shows an example of the
waveforms of the three output variables over 20 ms at steady
state operation and rated speed and torque.

III. OCCURRENCE OF DEADLOCKS

A. Definition of Deadlocks

An infeasible state is a state vector x(k) for which the
set of candidate switching sequences is empty at Step 3 of
the MPDTC algorithm, as defined in [8]. This implies that
there exists no switching sequence that is predicted to keep
the output variables within their bounds over the prediction
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Fig. 3: Root cause of deadlocks. The set of discrete voltage vectors in the αβ-
plane is enclosed by a circle, which contains all relaxed voltage vectors. The
circle, together with the constant torque (red dash-dotted) line and the constant
stator flux magnitude (blue dotted) line define the hatched feasible region.
This region contains the relaxed voltage vectors that achieve the desired
control command (increase torque, reduce stator flux magnitude). Since in
this example, the feasible region contains no discrete-valued voltage vectors,
the control problem is infeasible. This figure has been taken from [11].

horizon, assuming that the output variables are within their
respective bounds at time-step k. Correspondingly, if output
variables are outside of their bounds, there exists no candidate
switching sequence that reduces the bound violation at every
time-step within the prediction horizon. A deadlock is the
situation in which an infeasible state arises. This implies that
the control problem (3) is infeasible and cannot be solved.

B. Root Cause Analysis of Deadlocks

Deadlocks are caused by the combination of the output
variables being constrained between upper and lower bounds
and the fact that the switch positions are restricted to a
finite and discrete-valued set. In order to characterize these
deadlocks, the mathematical analysis provided in [2] and [11]
is summarized hereafter. Based on the standard state-space
equations of an induction machine and the expression for the
electromagnetic torque, the following approximate equations
can be derived.

dTe
dt

= 0 ⇐⇒ |ψr × v| =
(
ψT

s ψr

)
ω (5)

dψs

dt
= 0 ⇐⇒ ψT

s v = 0 , (6)

where ψs = [ψsα ψsβ ]
T is the stator flux vector, ψr =

[ψrα ψrβ ]
T the rotor flux vector, ω the rotor’s rotational speed

and vαβ = [vα vβ ]
T denotes the voltage vector. The latter

is obtained by the transformation of the three-phase voltages
vabc = [va vb vc]

T to the orthogonal αβ coordinate system.
For a symmetrical and sinusoidal three-phase system with

constant amplitude and frequency, the voltage vector that
achieves constant flux and torque rotates with the same fre-
quency and a constant amplitude around the origin of the
complex αβ plane. We refer to this continuous-valued vector
as the relaxed voltage vector. For a converter system, however,
only a finite number of discrete-valued voltage vectors is
available. These are shown as black dots in Fig. 3, assuming
a three-level inverter.

Considering the α and β-components of the relaxed voltage
vector as free variables, (5) describes a line in the αβ-plane
that is parallel to the rotor flux vector. This line is referred to
as the constant torque line. Voltage vectors that lie between
this line and the origin decrease the torque, voltage vectors
beyond this line increase it. Note that increasing the speed
(and therefore the modulation index) shifts the constant torque
line away from the origin and reduces the number of discrete-
valued voltage vectors. The control problem thus becomes
harder to solve.

Eqn. (6) describes a line in the αβ-plane that is perpendicu-
lar to the stator flux vector and intersects the origin. This line
is referred to as the constant stator flux magnitude line. Voltage
vectors that lie on the same side of this line as the stator flux
vector increase the stator flux magnitude, voltage vectors that
lie on the opposite side decrease it. Fig. 3 shows an example of
a typical deadlock situation based on the foregoing, theoretical
considerations.

The previous analysis focused on the torque and stator flux
magnitude. When the NP potential is taken into account as
well, a further restriction on the voltage vector is added.
Each switch position that corresponds to at least one phase
connected to the NP, has a particular influence on it, depending
on the sign of the phase current. Even if a voltage vector is
available that satisfies the required control commands for the
torque and the stator flux magnitude, the corresponding switch
position might lead to a violation of the NP potential’s bounds.

C. Location of Deadlocks in the State-Space

As will be shown in this section, in case of the NPC inverter,
deadlocks tend to occur in the following two cases.

• The electromagnetic torque is close to its lower bound
and needs to be increased, while the stator flux magnitude
is at its upper bound and is to be reduced, regardless of
the value of the NP potential. We refer to these deadlocks
as Type M deadlocks, with M referring to the fact that
only the two output variables of the machine give rise to
the deadlock.

• The torque or the stator flux magnitude are at their lower
bound and need to be increased, while the NP potential
is close to one of its bounds. We refer to this as Type N
deadlocks, where N refers to the fact that the NP, too, is
involved.

To determine the location of infeasible states in the state-
space, a simulation was run at nominal speed and torque over
1000 fundamental periods, as shown in Fig. 4. Depending on
the value of the NP potential, the deadlocks are divided into
the following three groups, and individual colors and markers
are assigned to each group.

red (+), if vn ≥ vn −Δvn (Type N)
black (*), if vn ∈ [vn +Δvn, vn −Δvn] (Type M)
blue (	), if vn ≤ vn +Δvn (Type N) ,

where Δvn = 0.006(vn−vn). The first and third group (Type
N) correspond to deadlocks, in which the NP potential is
close to or violates its upper or lower bound, respectively.
The second group (Type M) refers to deadlocks, in which the
NP potential is clearly within its bounds.
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(b) Deadlocks as a function of Ψs ∈ [Ψs, Ψs] and ρ ∈ [ − 180◦, 180◦],
where ρ is the angle between the rotor flux vector and the α-axis of the αβ
reference frame.

Fig. 4: Deadlocks at nominal speed and torque. Depending on their type, the
deadlocks form clearly visible and distinguishable clusters.

Fig. 4(a) depicts all deadlocks as a function of Te ∈
[T e, T e] and Ψs ∈ [Ψs, Ψs], i.e. the torque and flux
magnitude values within its bounds. The drive is operated
at nominal speed, torque and flux. Type M deadlocks are
concentrated in the lower right corner. In this region, a voltage
vector is required that increases the torque and decreases
the flux magnitude. This corresponds exactly to the situation
discussed in the foregoing analysis in Sect. III-B, which is
visualized in Fig. 3.

Type N deadlocks also reveal a certain pattern, namely
they occur close to the lower bounds of the torque and flux
magnitude, particularly in the lower left corner, where both
conditions are met. The reason why they occur exactly in this
way is hard to describe in a formal way since the neutral point
is involved as well. The plot indicates that Type M and Type
N deadlocks exhibit a distinctive behavior and suggests that
they ought to be handled separately, as will be discussed in
more detail in Sect. IV.

Fig. 4(b) depicts all deadlocks as a function of Ψs ∈
[Ψs, Ψs] and ρ ∈ [−180◦, 180◦] for all Te ∈ [T e, T e], where
ρ is the angle between the rotor flux vector and the α-axis
of the αβ reference frame. The Type M deadlocks appear
in intervals of 60◦ due to the 60◦-symmetry of the voltage
vectors. The Type N deadlocks appear in intervals of 120◦
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Fig. 5: Evolution of the instantaneous switching frequency (kHz) at nominal
speed and torque for the NPC inverter over 1 s. The red stars in Fig. 5(a)
indicate the occurrence of deadlocks. A correlation between deadlocks and
switching bursts can be observed.

due to the significant third-harmonic component of the NP
potential [14]. Note that the general deadlock pattern of Fig. 4
for nominal speed is representative for all other velocities, too.

D. Deadlock Resolution Strategy

In the context of MPC, infeasibility problems are usually
resolved by relaxing some of the control problem’s constraints
[15]. In the case of MPDTC, the main constraint leading to
deadlocks is the restriction of the inverter switch positions
to be discrete-valued, rather than real-valued; this constraint
cannot be relaxed. Instead, the hysteresis bounds are relaxed,
by modifying the optimality criterion. Specifically, instead of
minimizing the switching frequency, the predicted violation
of the hysteresis bounds at time-step k + 1 is computed and
the voltage vector that minimizes this violation is chosen [11].
This so called infeasibility exit strategy is executed once the
control algorithm has encountered a deadlock, and it is applied
until the deadlock has been resolved.

E. Switching Bursts

This infeasibility exit strategy reliably resolves all deadlocks
and ensures the stability of the system. It often requires,
however, several switching transitions within a short time-
interval, leading to a spike in the instantaneous switching
frequency, to which we refer as a switching burst. For the safe
operation of the inverter, it is mandatory for the instantaneous
switching frequency to be constant. Spikes can lead to local
overheating and might prevent the gate drivers from fully
recharging. In the worst case, switching bursts can lead to
the tripping of the drive system.

We define the instantaneous switching frequency as the
average number of switching events (of all switching devices)
during the last 1 ms. The instantaneous switching frequency
is updated at every sampling step. Fig. 5(a) shows the instan-
taneous switching frequency of MPDTC. Characteristic peaks
can be observed, which clearly correlate with the occurrence of
deadlocks, denoted by red stars. This indicates that deadlocks
cause switching bursts; avoiding deadlocks avoids these bursts,
as can be seen in Fig. 5(b).

IV. DEADLOCK AVOIDANCE STRATEGIES

In the following, three different families of deadlock avoid-
ance strategies (Approaches A, B and C) are presented. They
are based on terminal soft constraints, terminal weights and
exact deadlock prediction. While Approaches A and C can
be applied both to Type M and Type N deadlocks, Approach
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B, which uses a terminal weight, is restricted to Type N
deadlocks.

A. Approach A1: Terminal Soft Constraint on Torque and
Stator Flux Magnitude

The following terminal soft constraint is added as an
additional term Jt to the cost function (3a)

Jt =

{
λm if y(k +Np) ∈ Yc

0 else ,
(7)

where Yc represents the so called critical region for the
electromagnetic torque and stator flux magnitude

Yc = {y |Te ≤ T e+ΔTe}∩{y |Ψs ≥ Ψs−ΔΨs}∩Y . (8)

The set Yc, comprising the bottom right corner in Fig. 4(a),
correlates with a high likelihood of Type M deadlocks. The
variables ΔTe and ΔΨs are chosen such that all Type M
deadlocks are covered, whilst Yc is as small as possible. The
weight λm is very large.

The terminal soft constraint (7) has the following effect
on the selection process of the optimal switching sequence.
If there is at least one sequence such that Jt = 0 holds,
implying that its output trajectory does not terminate in the
critical region, then only switching sequences are considered
such that the constraint

y (k +Np) ∈ Y \Yc , (9)

is met. Out of this set of switching sequences, the one with the
lowest cost (switching frequency) Jsw, which is the original
cost function, is chosen as the optimal sequence. All switching
sequences with Jt = λm are suboptimal.

If no sequence with Jt = 0 exists, i.e. all sequences drive the
outputs into the critical region, then (9) is implicitly relaxed
and all sequences are considered. Therefore, (7) is equivalent
to the constraint (9), which is soft, i.e. can be relaxed. The
proposed method only performs well, if the critical region
is well defined and small compared with Y , since MPDTC
loses a certain degree of freedom, potentially impacting the
performance. In our case, these two conditions are satisfied.

B. Approach A2: Terminal Soft Constraint on Torque, Stator
Flux Magnitude and NP Potential

The terminal soft constraint can be extended to also address
the NP and therefore Type N deadlocks. The critical region is
then defined as Y ′

c = Yc ∩ Yn with

Yn = {y | vn ≤ vn +Δvn} ∪ {y | vn ≥ vn −Δvn} , (10)

where Δvn was defined in Section III-C.

C. Approach B: Terminal Weight on NP Potential

Approach B focuses on the NP trajectory and thus on Type
N deadlocks. The quadratic terminal weight

Jt = λn
(
vn(k +Np)

)2
(11)

is added to the cost function (3a), where λn is a tuning
parameter. As a result, NP trajectories ending close to the
reference, which is typically zero, are penalized little, whereas
trajectories with significant deviations are penalized severely.

D. Approach A1B: Combination of Approaches A1 and B

The terminal soft constraint on the torque and stator flux
trajectories (Approach A1) can be combined with the terminal
weight on the NP trajectory (Approach B), by adding both (7)
and (11) to the cost function (3a).

E. Approach C1: Deadlock Prediction at Time-Step k +Np

Approach C adds a post-processing step to the MPDTC al-
gorithm. Once the switching sequences have been enumerated
and a potentially optimal switching sequence U∗(k) has been
determined, a deadlock prediction step is executed according
to the following procedure:

1) Given U∗(k), the terminal state x∗(k+Np) is calculated
using (3b).

2) Using x∗(k + Np) as new initial state, the existence of
at least one switching sequence U(k + Np) starting at
k +Np is evaluated that meets the constraints (3b)–(3e)
at the time-steps k+Np+1, . . . , k+Np+Ns. Note that
Ns equals the minimum length of a feasible switching
sequence.

3a) If such a U(k + Np) exists, this serves as a proof
that under nominal conditions (no model mismatches, no
reference changes, no measurement errors) the optimal
switching sequence U∗(k) does not lead into a deadlock.

3b) If no feasible U(k + Np) is found in step 2), U∗(k) is
discarded, the second best sequence is chosen as optimal
sequence U∗(k) and the procedure is repeated, starting
at step 1).

In this iterative way, all candidate switching sequences, start-
ing with the one with the lowest cost, are analyzed in ascend-
ing order of their cost, until one is found that does not lead
into a deadlock. If no such sequence exists, the one with the
lowest cost is selected, similar to Approach A1.

F. Approach C2: Deadlock Prediction at Time-Step k + 1

A modified version of Approach C uses x∗(k + 1) as the
new initial state, rather than x∗(k + Np). Looking only one
instead of Np steps ahead, adds robustness to the strategy,
since x∗(k+1) can be predicted more accurately than x∗(k+
Np), particularly when the prediction horizon is very long.

V. PERFORMANCE RESULTS FOR THE NPC INVERTER

Performance results of the proposed deadlock avoidance
strategies are presented hereafter. Their influence on the fre-
quency of deadlocks, the occurrence of switching bursts and
the performance are investigated. The NPC inverter driving a
medium-voltage induction machine shown in Fig. 1 is used,
with its parameters given in Table 1 in [7].

A. Effect on the Frequency of Deadlocks

At nominal torque, Fig. 6 depicts the number of deadlocks
as a function of the speed ω for all proposed deadlock
avoidance approaches. In both figures, the straight (black) lines
refer to the original MPDTC version, serving as a benchmark.
Fig. 6(a) presents the results for Approaches A1, A2 and B,
whereas Fig. 6(b) focuses on Approaches A1B, C1 and C2.
Approach A1B avoids all deadlocks except for at ω = 0.6.
Considering the results of A1 and B separately, one can
see that the effect of Approach A1B is not simply the sum
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Fig. 6: Frequency of deadlocks (Hz) as function of the speed ω. The results of the original MPDTC version and the Approaches A1, A2, B, A1B, C1 and
C2 are depicted.

of A1 and B, but rather the synergy of both. A detailed
analysis showed that Approach A1 significantly reduces Type
M deadlocks, while increasing Type N deadlocks, with the
overall result not showing a significant improvement. If A1 is
however combined with Approach B, which reliably resolves
all Type N deadlocks, this negative effect is compensated for,
resulting in a very good overall performance. Approaches A2

and C1 work nearly as well as A1B in terms of deadlock
reduction, while C2 is less successful.

B. Effect on Switching Bursts

As previously mentioned, the observed correlation between
deadlocks and switching bursts leads to the assumption that
with the avoidance of deadlocks also the switching bursts
can be avoided. Fig. 5(a) shows the instantaneous switching
frequency for the original MPDTC version, with clearly iden-
tifiable switching bursts. Approach A1B successfully avoids
all switching bursts, as shown in Fig. 5(b).

This is not achieved by the other promising approaches, i.e.
A2, C1 and C2. It appears that for these approaches the effort
in terms of switching events to avoid deadlocks is similar to the
effort to resolve deadlocks using the infeasibility exit strategy.
In other words, for Approaches A2, C1 and C2, the switching
bursts are only shifted, not removed.

Additional investigations revealed that Type N deadlocks are
the dominant cause of switching bursts, and that these dead-

ω (pu) Δfsw (%) ΔITHD (%) ΔTTHD (%) fDL (Hz) λn

1 −2 −0.9 −0.6 0 125
0.9 −1.3 −0.25 −0.2 0 75
0.8 0 0 0 0 0
0.7 0 −0.6 0.2 0 50
0.6 −1.13 −0.4 −1.6 4.5 250
0.5 −2.5 −1 0.3 0 125
0.4 −0.9 −2 0.8 0 150
0.3 0.5 −0.9 1.4 0 300
0.2 0 −1.2 −0.3 0 75
0.1 0 −0.5 0 0 25

TABLE I: Performance improvement in percent resulting from Approach A1B,
using the original MPDTC version as a baseline.

locks are in general more difficult to resolve than deadlocks
caused by the torque or flux (Type M deadlocks). It is there-
fore paramount to efficiently avoid Type N deadlocks. Only
Approach B, based on a terminal weight on the NP potential,
works in an excellent way, avoiding Type N deadlocks and
switching bursts. The terminal weight reduces the fluctuation
of the NP potential around its reference gently and smoothly.

C. Effect of the Approach A1B on the Performance

Since only Approach A1B avoids deadlocks as well as
switching bursts, the further investigation is restricted to it. In
the following, the effect of A1B on the switching frequency
fsw, the total harmonic distortions (THD) of the current
and torque, ITHD and TTHD, respectively, and the frequency
of deadlocks fDL are investigated and discussed. Using the
original MPDTC version as a baseline, these performance
values are normalized and their percentagewise deviation from
the original version is shown, e.g. Δfsw = (fA1B

sw −f org
sw )/f org

sw .
Fig. 7 shows fDL, Δfsw and ΔITHD as a function of

the terminal weight λn imposed on the NP potential. Three
different velocities ω ∈ {0.3, 0.6, 1} are investigated. As λn
is increased, the NP potential is kept more tightly around its
reference and the number of deadlocks is reduced accordingly,
which tends to also reduce the switching frequency. Large λn,
however, entail a higher control effort, resulting in an increase
in the switching frequency.

The influence of λn on the current distortion is small, since
it depends primarily on the hysteresis bounds on the stator flux.
Nevertheless, less fluctuations of the NP potential provide less
”distorted” voltage vectors, and avoiding deadlocks prevents
potential bound violations. Both aspects have a positive impact
on the current THD, as it is visible in Fig. 7(c).

Fig. 7 also reveals that the benefit of the terminal weight is
similar for all speeds. To obtain excellent results, however, λn
has to be tuned speed-dependent, as summarized in Table I.

VI. PERFORMANCE RESULTS FOR THE ANPC INVERTER

A. Control Scheme for the 5L ANPC Inverter

This section considers a medium-voltage drive system com-
prising a 6.6 kV induction machine and the five-level active
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Fig. 7: Frequency of deadlocks fDL, deviation in switching frequency Δfsw and deviation in current THD ΔITHD as a function of the terminal weight λn

on the NP potential for three different velocities ω ∈ {0.3, 0.6, 1}.

neutral point clamped (ANPC) inverter shown in Fig. 8, which
was recently proposed in [12]. Featuring in each phase a flying
capacitor charged to one forth of the dc-link voltage, five
voltage levels per phase can be synthesized.

Current control and modulation is achieved by a hierarchical
control scheme. The upper layer is based on offline computed
optimal pulse patterns (OPPs), which minimize the current
THD for a given switching frequency. Fast closed-loop control
of the machine currents is achieved by controlling the stator
flux vector along its reference trajectory, manipulating the
switching instants of the OPPs online, using the principle
of model predictive control. We refer to this control scheme
as model predictive pulse pattern control (MP3C), which is
described in detail in [16] and applied to the ANPC topology
in [17].

The lower control layer keeps the NP potential and the phase
capacitor voltages within bounds around their references,
exploiting the three-phase redundancy of the voltage vectors
and the single-phase redundancy of the phase states. We refer
to this control scheme as model predictive direct balancing
control (MPDBC) [18], which is a derivative of MPDTC.
Analogous to MPDTC, the predictive balancing algorithm uses
a switching horizon, extrapolation and bounds, within which
the output variables are kept, while minimizing the switching
frequency.

In summary, MP3C controls the machine and derives an
optimal sequence of voltage vectors, based on which MPDBC
controls the internal inverter voltages (NP potential and three

vdc
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vph,x Cph

is,abc
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S5 S6

S7 S8

Fig. 8: Equivalent representation of the five-level active neutral point clamped
(ANPC) voltage source inverter driving an induction machine (IM)

phase capacitor voltages), providing the firing signals for the
semiconductors. As a result, the issue of deadlocks is restricted
to MPDBC. An analysis over the whole speed range reveals
that many deadlocks occur at nominal speed ω = 1 and a few
around ω = 0.3. In the following, two deadlock avoidance
schemes are proposed, one for nominal and one for low speed.

B. Deadlock Avoidance at Nominal Speed

When neglecting the NP potential, it is a characteristic of the
ANPC inverter that a redundant switch position always exists
that reverses the current through the phase capacitors, thus
enabling the balancing of their voltages. When also consider-
ing the NP potential, this statement does no longer hold. At
nominal speed, outer voltage vectors are predominantly used,
which exhibit very little redundancy, restricting the degrees
of freedom of MPDBC. This tends to lead to a significant
number of deadlocks, in which the NP potential and one (or
more) phase capacitor voltages act as antagonists.

Since MPDBC is a derivative and tailored form of MPDTC,
the same deadlock avoidance methods as introduced in
Sect. IV can be used. For the deadlocks at nominal speed,
Approach B, which imposes a terminal weight on the deviation
of the NP potential from its reference, is investigated. For
appropriate values of λn, all deadlocks and all switching bursts
can be successfully avoided, as can be seen in Fig. 9.

C. Deadlock Avoidance at Low Speed

The deadlocks occurring at low speed around ω = 0.3 are
of a different kind and require another avoidance strategy. In
this operating regime, short voltage vectors with a three-phase
redundancy of four are available. Each of these redundant
voltage vectors corresponds to a different common mode
voltage. As an example, consider the set of voltage vectors
[1 1 2], [0 0 1], [-1 -1 0] and [-2 -2 -1]. Switching between
these three-phase redundant voltage vectors requires switching
in all three phases, incurring a high switching cost.

Deadlocks tend to occur when using such a voltage vector
with a particular large or small common mode voltage—in
the example above [1 1 2] or [-2 -2 -1]. Since switching
the common mode by more than one level up or down is
prohibitively expensive and would require an extremely long
prediction horizon over which to discount the commutations,
MPDBC often fails to achieve this.
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Fig. 9: Evolution of the instantaneous switching frequency (kHz) at nominal
speed and torque for the ANPC inverter over 1 ms. The red stars indicate the
occurrence of deadlocks.

This excessive redundancy in the voltage vectors leads to
deadlocks, which can be resolved by adding a penalty on the
highest and lowest common mode levels. As is indicated in
Fig. 10, this approach works well, removing all deadlocks at
low speed.

VII. CONCLUSION

For a NPC inverter drive system, this paper shows that
the deadlocks encountered during the execution of the model
predictive direct torque control (MPDTC) algorithm can be
separated into two groups. The first group comprises the
deadlocks that are exclusively caused by the interplay be-
tween the torque and stator flux magnitude of the machine.
The second group consists of deadlocks, where the NP po-
tential is also involved, being close to one of its bounds
or even violating them. Furthermore, it is highlighted that
these deadlocks trigger spikes in the instantaneous switching
frequency, so called switching bursts. To prevent the MPDTC
algorithm from running into deadlocks, a combination of
terminal constraints on the electromagnetic torque and stator
flux magnitude together with a terminal weight on the NP
potential is proposed. This minor modification to the original
MPDTC algorithm successfully avoids all deadlocks over the
whole speed range. As a result, the switching bursts are also
avoided, while no significant performance loss, such as an
increase in the switching frequency or the current THD, is
caused by the introduced methods.

This deadlock avoidance method is also applicable to drives
with more complicated inverter topologies such as the five-
level ANPC inverter drive system, as briefly discussed in the
previous section of this paper. Unlike for the NPC inverter, for
which only the NP potential must be balanced, for the five-
level topology also the three phase capacitor voltages must be
controlled, greatly complicating the task of the model predic-
tive direct balancing controller (MPDBC). The introduction
of a terminal weight on the NP potential maintains the latter
closer to its reference value and greatly reduces the balancing
effort required for the NP potential. At low speed, a penalty
on the common mode voltage is imposed. As a result, the
deadlocks and switching bursts are not only avoided, but a
significant improvement of the overall performance is also
observable. At nominal speed, with respect to the baseline
MPDBC method, the average switching frequency and the
current THD are reduced by 20% and 13%, respectively, as
detailled in [14].
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Fig. 10: Evolution of the instantaneous switching frequency (kHz) at ω = 0.3
and nominal torque for the ANPC inverter over 3 ms. The red stars indicate
the occurrence of deadlocks.
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