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Abstract
Pulse width modulation by optimized pulse patterns lowers the harmonic current distortions in high
power converters as a result of a specifically designed optimization problem. The typically imposed
quarter- and half-wave symmetry on the switching signal adds artificial restrictions to the optimization
problem, which leads to suboptimal solutions. Relaxing these symmetry restrictions, a general optimiza-
tion problem is formulated, which achieves up to 30 % lower harmonic distortions.

Introduction
To control the output voltage of a converter, pulse width modulation (PWM) techniques are used to
translate a continuous-valued modulating signal u∗ to a discrete-valued switching signal u by using a
sequence of pulses of variable width. The switching nature of PWM introduces unwanted harmonic
content in the converter output. Optimal PWM aims to reduce the harmonic distortions in the output
by computing the pulse patterns, i.e. the switching angles, in an offline procedure. In order to simplify
the harmonic representation of the pulse pattern, periodicity and quarter- and half-wave symmetry are
typically imposed. This reduces the problem dimension to d switching angles in the first quarter period
of the pattern.

Two distinct performance criteria are applied when calculating the switching angles of the pulse patterns.
The concept of selective harmonic elimination (SHE) was first presented in 1970 [1]. The angles are
determined by solving a system of d algebraic equations that eliminate d − 1 harmonics and set the
fundamental component to the desired magnitude. In the late 1970s, a second approach was introduced
that derives an optimization problem designed to minimize the entire harmonic content of the converter
output, resulting in optimized pulse patterns (OPPs) [2]. This technique is sometimes also referred to as
synchronous optimal PWM.

A more general approach to the SHE problem was presented in [3], which relaxes the assumption of
quarter-wave symmetry for two- and three-level switching signals. Due to this relaxation, the solution
space increases and multiple new solutions can be found. Research on relaxed symmetry SHE was
further extended to multi-level converters [4], resulting in an infinite number of solutions.
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Fig. 1: Single-phase full-wave symmetric pulse pattern (solid line) with k = 8 switching angles αi and
switching transitions ∆ui. The fundamental component (dashed line) has the amplitude û1 = m.

For the OPP problem, the relaxation of quarter-wave symmetry was investigated only recently in [5]
and [6] considering pulse numbers 5 and 7, respectively. Compared with the traditional quarter- and
half-wave symmetric results, the relaxed OPPs have superior harmonic performance in certain ranges
of the modulation index. In [7], OPPs with relaxed quarter-wave symmetry were computed for a two-
level inverter including the different isotropy properties of the connected synchronous motor. Again, the
half-wave symmetric OPPs reduce the harmonic distortions in certain intervals of the modulation range.

This paper introduces OPPs with relaxed symmetry for the three-level inverter. The general pulse pattern
definitions and PWM requirements are formulated, and used to derive the optimization problems for
OPPs with half-wave symmetry, and symmetry of one period, i.e. full-wave symmetry. The analysis of
the relaxed OPP optimization problem reveals certain new features, such as lower harmonic distortions
for specific modulation indices and OPPs with non-integer pulse numbers.

General Considerations
OPPs are the solution to a constrained optimization problem, i.e. the minimization of a cost function
subject to constraints. The key characteristics of the general OPP optimization problem for a three-level
neutral-point clamped (NPC) inverter are described in this section.

Switching Signal
The single-phase full-wave symmetric switching signal u(θ) is a periodic waveform defined by k + 1
switch positions ui with i ∈ {0, . . . ,k}, and k switching angles αi with i ∈ {1, . . . ,k} over a fundamental
period of 2π, see Fig. 1. For the three-level inverter, the switch positions are restricted to ui ∈ {−1,0,1}.
In fact, the switch positions in the first half-wave of the fundamental, from 0 to π, are assumed to be
either 0 or 1, and accordingly either -1 or 0 in the second half-wave, from π to 2π. Due to periodicity, the
initial and last switch position must be the same, which implies an even number of switching angles k.

The switching angles correspond to the switching transitions ∆ui = ui−ui−1 with ∆ui ∈ {−1,1}. Owing
to the distinction between the positive and negative half-wave of the pulse pattern and the restricted
domain of the three-level switching signal, it follows that there is a fixed sequence of switching transitions
for every k over one period.

Consider a three-level switching signal with period T1 = 1/ f1 and k switching transitions. Each transition
causes one of the four semiconductors in a phase-leg to turn on. This means that on average in one
fundamental period each semiconductor has k/4 turn-on transitions, giving an average device switching
frequency of fsw = k/(4T1). The ratio of device switching frequency to fundamental frequency defines
the pulse number d

d =
fsw

f1
=

k
4
. (1)

Typically, for three-level OPPs with quarter- and half-wave symmetry, the pulse number d is an integer
number. For full-wave symmetric OPPs, the number of switching angles k is restricted to even integer



numbers due to periodicity. Following the definition in (1), this gives rise to non-integer pulse numbers,
e.g. d = 1.5 for k = 6.

Harmonic Analysis
A periodic signal, such as the switching signal u(θ), can be represented by the Fourier series expansion

u(θ) =
a0

2
+

∞

∑
n=1

(
an cos(nθ)+bn sin(nθ)

)
. (2)

Assuming a period of 2π, the Fourier coefficients an and bn of the harmonic order n are given by

an =
1
π

∫ 2π

0
u(θ)cos(nθ)dθ, for n≥ 0 and bn =

1
π

∫ 2π

0
u(θ)sin(nθ)dθ, for n≥ 1. (3)

The amplitude ûn of the n-th switching signal harmonic is given by ûn =
√

a2
n +b2

n. Note that n = 1
denotes the fundamental component, and n > 1 characterizes the harmonic content of the signal.

The metric of minimal harmonic distortions in the inverter output current is adopted for the OPP com-
putation by minimizing the total demand distortion (TDD) of the current. The TDD is the square root of
the sum of the squared current harmonics în relative to the nominal current

ITDD =
1√

2Inom

√
∑
n6=1

(
în
)2
, (4)

where Inom is the rms value of the nominal current.

Assuming the inverter is connected to an induction machine, the current harmonics are dependent on the
total stator leakage inductance Lσ, as the stator resistance can be neglected: în = v̂n/(nω1Lσ). This im-
plies a frequency weighting of the voltage harmonics v̂n with multiples of ω1 = 2π f1, i.e. the fundamental
angular frequency.

The harmonics of the inverter output voltage are the scaled switching signal harmonics. In case of the
three-level inverter, the scaling factor is half the dc-link voltage Vdc: v̂n = (Vdc/2) ûn. Substituting both
mathematical relationships in (4) gives a closed form for the current TDD as a function of the switching
signal harmonics.

ITDD =
1√

2Inom ω1Lσ

Vdc

2

√√√√∑
n6=1

(
ûn

n

)2

(5)

Splitting (5) into two terms gives: ITDD = C
√

J, where C is a constant factor depending only on the
inverter and machine parameters. It is thus apparent that the term under the square root J is proportional
to the current TDD. It is therefore taken as objective function for the OPP optimization problem.

J = ∑
n6=1

(
ûn

n

)2

(6)

Problem Statement
In a symmetrical three-phase system with a floating star point, voltage harmonics of triplen order,
i.e. integer multiples of three, are in phase and thus have no influence on the load current. Therefore,
triplen order harmonics are not considered in the objective function. Furthermore, due to symmetry
between the three phases, the computation of the single-phase switching signal is sufficient.

The switching signal is defined to have zero dc-offset, a fundamental phase shift of zero and a fundamen-
tal magnitude corresponding to that of the modulating signal, i.e. the modulation index m. Furthermore,



the optimization variables, i.e. the switching angles, have to remain in ascending order and within a
fundamental period.

Thus, with the only assumption of full-wave symmetry, the general OPP problem for a three-level inverter
connected to an inductive load is as follows

minimize
αi

J(αi) = ∑
n=2,4,5,7,...

1
n2

(
a2

n +b2
n
)

subject to a0 = 0

a1 = 0

b1 = m

0≤ α1 ≤ α2 ≤ . . .≤ α4d ≤ 2π.

(7)

The Fourier coefficients an and bn are functions of the switching angles. The closed-form expressions
depending on the different symmetry assumptions are derived in the following section.

Full-Wave Symmetry

In the optimization problem for OPPs with full-wave symmetry, i.e. periodicity of 2π, all 4d switching
angles are the optimization variables. As there is no symmetry within one period, the pattern over one
full period is considered to derive the Fourier coefficients. Recall that the switching signal is a piece-wise
constant signal. Thus, the integrals in (3) can be split into 4d+1 parts with the switching angles as limits
and the switch positions as constant factors

an =
1
π

[
u0

∫
α1

0
cos(nθ)dθ+u1

∫
α2

α1

cos(nθ)dθ+ . . .+u4d

∫ 2π

α4d

cos(nθ)dθ

]
. (8)

Representing the switch positions as the sum of switching transitions, ui = u0 +
i

∑
j=1

∆u j, allows to rear-

range the integrals as follows, see in detail [8, Ch. 3 Appendix A],

an =
1
π

[
u0

∫
α1

0
cos(nθ)dθ+(u0 +∆u1)

∫
α2

α1

cos(nθ)dθ+ . . .+

(
u0 +

4d

∑
i=1

∆ui

)∫ 2π

α4d

cos(nθ)dθ

]

=
1
π

[
u0

∫ 2π

0
cos(nθ)dθ+∆u1

∫ 2π

α1

cos(nθ)dθ+ . . .+∆u4d

∫ 2π

α4d

cos(nθ)dθ

]

=
1
π

[
u0

∫ 2π

0
cos(nθ)dθ+

4d

∑
i=1

∆ui

∫ 2π

αi

cos(nθ)dθ

]
. (9)

Solving the integrals gives the compact form of the Fourier coefficients for full-wave symmetric pulse
patterns as listed in (10) in Table I. We can see from the derived expressions that the full-wave symmetric
switching signal consists of all integer order harmonics with an arbitrary phase shift and a dc-component.
This requires the additional constraints in (7) on the dc-offset and the phase shift of the fundamental
component.

Half-Wave Symmetry

Assuming half-wave symmetry, i.e. u(π+θ) =−u(θ), restricts the switching signal optimization to one
half-wave of the pattern. This means that the 2d switching angles are constrained to be between 0 and
π and should be in ascending order. Furthermore, from half-wave symmetry follows that the signal
contains only harmonics of odd order and is without dc-offset. Thus only odd, non-triplen harmonics are
considered in this optimization problem, and the dc-offset constraint can be dropped, as it is satisfied for
all solutions. The coefficients for the half-wave symmetry OPP problem are given in (11) in Table I.



Table I: Fourier coefficients an and bn when assuming full-wave (or 2π) symmetry (FWS), half-wave
symmetry (HWS), and quarter- and half-wave symmetry (QaHWS)

an bn

FWS

a0 = 2u0−
1
π

4d

∑
i=1

∆uiαi

an =−
1

nπ

4d

∑
i=1

∆ui sin(nαi)

bn =
1

nπ

4d

∑
i=1

∆ui cos(nαi) (10)

HWS an =


0, n = 0,2,4, . . .

− 2
nπ

2d

∑
i=1

∆ui sin(nαi), n = 1,3,5, . . .
bn =


0, n = 0,2,4, . . .

2
nπ

2d

∑
i=1

∆ui cos(nαi), n = 1,3,5, . . .

(11)

QaHWS an = 0 bn =


0, n = 0,2,4, . . .

4
nπ

d

∑
i=1

∆ui cos(nαi), n = 1,3,5, . . .

(12)

Quarter- and Half-Wave Symmetry

By additionally imposing quarter-wave symmetry u(π−θ) = u(θ) on the pulse pattern, the optimization
problem gets further restricted to one quarter of a fundamental period with d optimization variables. The
combination of quarter-wave and half-wave symmetry turns the switching signal into an odd function
with only odd-order harmonics without phase shifts. As a result, the Fourier coefficients an and all bn of
even order are zero, see (12) in Table I. In this case, the harmonic amplitude is directly given by ûn = bn

and the optimization variables are restricted to the first quarter period 0≤ αi ≤ π

2 . This case corresponds
to the traditional formulation of the OPP problem.

Results
In the following section, the effects of the symmetry relaxation on the OPP problem are shown and the
resulting current TDDs are compared to the traditional OPP results. For the OPP computation, we con-
sider a three-level NPC inverter connected to a three-phase induction machine. The system parameters
are given in Table II.

The OPPs were computed for the entire modulation index range from 0 to 4
π

with a step size of 0.01.
The number of initial conditions for the optimization problem at each step was chosen as 100 to increase

Table II: System parameters

Parameter Symbol SI value
Rated line-to-line voltage VR 3.3 kV
Rated stator current IR 2.12 kA
Rated angular stator frequency ωsR 2π50rad/s
Dc-link voltage Vdc 5.2 kV
Total leakage inductance Lσ 0.73 mH
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Fig. 2: Current TDDs of quarter- and half-wave
symmetric (QaHWS) OPPs and half-wave sym-
metric (HWS) OPPs with d = 2
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Fig. 3: Switching angles in the first half-wave of
the half-wave symmetric OPPs with d = 2

the probability of finding the global minimum. The infinite sum of harmonics in the objective function
is approximated by considering the first 100 harmonics. This is justified by the fact that the harmonic
magnitudes at high frequencies are very small. The computation was done for pulse numbers 2 and 3. In
the case of full-wave symmetry, the pulse numbers 1.5 and 2.5 were also considered. The computation
of the OPPs was done with the fmincon solver of the MATLAB Optimization ToolboxTM.

For pulse number 2, the current TDDs of OPPs with quarter- and half-wave symmetry and only half-wave
symmetry imposed are compared in Fig. 2. The figure shows that, in certain intervals of the modulation
index, the current TDD is reduced by the half-wave symmetric OPPs. In the remaining modulation index
ranges, the half-wave symmetric problem yields the same results as the traditional quarter- and half-wave
symmetric problem. The limits of the improvement intervals and the maximum improvement in absolute
value and percentage of the original current TDD are listed in Table III.

The change from quarter- and half-wave symmetry to only half-wave symmetry in the improvement
intervals is also apparent from Fig. 3. The figure shows the solutions to the half-wave symmetry opti-
mization problem, which is the set of switching angles in the first half-wave. We can see from the figure
that for all modulation indices except within the improvement intervals, the four switching angles are
symmetric to each other with respect to π

2 . For modulation indices within the improvement intervals, the
third switching angle is shifted below π

2 , which eliminates the quarter-wave symmetry.

From Fig. 2 and Table III, we can see that the current TDD can be reduced by up to 20 % with half-wave
symmetric OPPs. This highlights the fact that the commonly imposed quarter-wave symmetry assump-
tion is in fact a restriction on the OPP optimization problem, which has an impact on the optimality of
the solutions.

This effect of the restrictions on the optimization problem, in particular on the cost function, is visualized
in Fig. 4. The figure shows the cost function of the half-wave symmetric OPP problem with pulse number
2 at the modulation index m = 0.92 over the entire feasible area as a function of the first α1 and last
optimization variable α4. The remaining two optimization variables are then determined by the two
constraints on the fundamental amplitude b1 = m, and phase shift a1 = 0. The optimal solution to the

Table III: Intervals of current TDD improvement when relaxing symmetry for d = 2

Interval
Modulation index

interval
Maximum absolute

reduction of current TDD
Maximum relative

reduction of current TDD
1. 0.72 < m < 0.93 2.34 % 19.52 %
2. 1.22 < m < 1.26 0.58 % 8.60 %
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Fig. 4: Cost function in α1 and α4 of the half-wave symmetric OPP problem with d = 2, m = 0.92.
The cross indicates the half-wave symmetry optimal solution; the circle marks the traditional optimal
solution. The dashed line corresponds to the restricted solution space of the traditional problem.
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Fig. 5: Quarter- and half-wave symmetric OPP
with d = 2, m = 0.92 (corresponding to the circle).
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Fig. 6: Half-wave symmetric OPP with d = 2,
m = 0.92 (corresponding to the cross).

problem, i.e. the global minimum, thus lies within the shown solution space. The dashed line in the
figure represents the restriction due to quarter-wave symmetry, i.e. α4 = π−α1. Note that we chose the
domain of the switching angles here in degree instead of radians for better readability.

For the example pulse number d = 2, we can see from the figure that the solution space becomes one-
dimensional when imposing quarter-wave symmetry. Thus, the local minima indicated by the circle
defines the optimal solution to the quarter- and half-wave symmetric OPP problem. When removing
the quarter-wave symmetry restriction, the solutions space increases to the entire two-dimensional area
shown in the figure. We can see that two new local minima emerge: one at the bottom and another
one at the right side of the solution space. At this particular modulation index, the local minima on the
bottom indicated with the cross is identified as the global minimum and thus as the optimal solution to
the half-wave symmetric OPP problem.

As the modulation index is increased, the different local minima vary in magnitude. Thus, the global
minimum changes along the modulation range. Each change of the global minimum corresponds to
additional discontinuities of the switching angles in Fig. 3.
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Fig. 7: Current TDDs of quarter- and half-wave
(QaHWS) and half-wave symmetric (HWS) OPPs
with d = 3.
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Fig. 8: Half-wave symmetric OPP with d = 3 and
m = 0.52.

The resulting OPPs of the two symmetry cases for the example of m = 0.92 and pulse number 2 are
shown in Fig. 5 and Fig. 6. We can see from the figures that the half-wave symmetric OPP achieves the
lower current TDD by bringing more than half of the switching angles of one half-wave together in one
quarter. This is in line with the previous observation from Fig. 3 that the third switching angle is shifted
below π

2 .

For pulse number 3, the current TDDs of the OPPs with quarter- and half-wave symmetry and only half-
wave symmetry imposed are shown in Fig. 7. The symmetry relaxation again leads to improvements
of the current TDD in certain intervals of the modulation index. In Table IV, the exact percentages of
the current TDD reductions are listed for each interval. By relaxing quarter-wave symmetry, a relative
improvement of up to 30 % of the current TDD is achieved. In the third and fourth interval, the current
TDD reduction is achieved, similar as for pulse number 2, by bringing more than half of the switching
angles in one half-wave together in one quarter. In the first two intervals, entirely new OPPs are the
result. An example of such an OPP is shown in Fig. 8 for m = 0.52.

Lastly, both quarter- and half-wave symmetry are relaxed. This leads to no further reduction of the
current TDD, at least for the investigated pulse numbers 2 and 3. The solutions of these full-wave sym-
metric optimization problems correspond for the entire modulation range to the half-wave symmetric
OPPs. However, full-wave symmetry offers the feature of non-integer pulse numbers. The current TDDs
of OPPs with pulse numbers 1.5 and 2.5 are shown in Fig. 9 together with the ones of the half-wave sym-
metric OPPs with the integer pulse numbers 1, 2 and 3. We can see from the figure that the non-integer
optimization problems are feasible over the entire modulation range. Moreover, for every modulation
index, there exists a full-wave symmetric OPP with a non-integer pulse number d that yields a current
TDD bounded by the ones of the integer pulse numbers d and d. Note that d is the next lower integer of
d, while d corresponds to the next higher integer number.

In Fig. 10, an example of a full-wave symmetric OPP with pulse number d = 2.5 for m = 0.9 is shown.
We can see that both half-waves are no longer symmetrical to each other, which results in an entirely new

Table IV: Intervals of current TDD improvement when relaxing symmetry for d = 3

Interval
Modulation index

interval
Maximum absolute

reduction of current TDD
Maximum relative

reduction of current TDD
1. 0.45≤ m≤ 0.67 1.96 % 29.46 %
2. 0.71≤ m≤ 0.73 0.40 % 6.67 %
3. 1.01≤ m≤ 1.10 0.33 % 4.35 %
4. 1.17≤ m≤ 1.19 0.44 % 8.67 %
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Fig. 10: Full-wave symmetric OPP with d = 2.5
and m = 0.9.

OPP. However, comparison to the OPP in Fig. 6 reveals that the first half-wave of the full-wave symmetric
OPP, which comprises two pulses, closely corresponds to one half-wave of the half-wave symmetric OPP
with pulse number 2. Similarly, the second half-wave of the full-wave symmetric OPP matches the half-
wave of the half-wave symmetric OPP with pulse number 3. Thus, the full-wave symmetric OPP with
the non-integer pulse number d is a combination of the half-wave symmetric OPPs with pulse numbers
d and d.

Conclusion
Relaxing quarter- and half-wave symmetry for the three-level OPP problem reveals the highly restrictive
nature of these symmetry assumptions. Multiple new solutions are found for the newly derived problems
with relaxed symmetry. In certain intervals of the modulation range, these new OPPs reduce the current
TDD and therefore outperform the traditional suboptimal quarter- and half-wave symmetric OPPs.

In particular, relaxation of quarter-wave symmetry reduces the harmonic distortions by up to 20 % for
pulse number 2 and by up to 30 % for pulse number 3. Relaxing additionally half-wave symmetry
removes the restriction of integer pulse numbers. The resulting OPPs achieve current TDDs between the
current TDDs of the traditional integer OPPs.
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