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Abstract—This paper presents a control scheme that combines
the optimal steady-state performance of optimized pulse patterns
(OPPs) with the fast dynamics of direct model predictive control
(MPC). Due to inherent challenges that relate to the utilization of
OPPs in a closed-loop setting, OPPs are traditionally used in slow
control loops. As a result, the associated dynamic performance
of the drive system is considerably poor. To overcome this, in
this work, a direct MPC algorithm is employed to manipulate
the OPPs in a fast, yet optimal, manner. Specifically, the MPC
algorithm takes advantage of the knowledge of the stator current
evolution—as described by its gradient—within the prediction
horizon. Subsequently, a constrained optimization problem with
a receding horizon is solved to compute the optimal modification
of the offline-computed OPP such that superior steady-state
and dynamic performance is achieved. The effectiveness of the
proposed method is verified based on a variable speed drive
system, which consists of a two-level inverter and a low-voltage
induction machine.

I. INTRODUCTION

Among the control strategies used in power electronics,

model predictive control (MPC) [1] has gained a lot of pop-

ularity due to its various advantages, including the ability to

handle multiple control variables and system constraints [2]–

[4]. From the several variants of MPC, direct MPC with

reference tracking—also known as finite control set MPC

(FCS-MPC)—has been widely used due to its simple de-

sign procedure and straightforward implementation [4]. Direct

MPC exploits the finite number of possible switch positions of

a power converter and allows the combination of the control

and modulation problems into one computational stage [5].

However, due to the lack of a modulator, it suffers from

a variable switching frequency and a non-discrete current

harmonic spectrum, while its performance can be worse than

that of conventional control and modulation methods if poorly

designed [6]. Various solutions have been proposed to over-

come these limitations, such as indirect MPC [7], i.e., MPC

with modulator, or direct MPC with an implicit modulator.

Examples of the latter include MPC with programmed pulse

width modulation (PWM), such as optimized pulse patterns

(OPPs) [8], and MPC with variable switching time instants,

e.g., gradient-based MPC [9].

OPPs, in particular, are an attractive option since they pro-

duce minimal current harmonic distortion for a given switching

frequency [8], [10]. More specifically, OPPs are calculated

offline by solving an optimization problem that computes

the switching angles of a given pulse pattern with quarter-

and half-wave symmetry properties such that the minimum
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current total harmonic distortion (THD) results. This procedure

is performed for different pulse numbers, i.e., single-phase

switch transitions over a quarter of the fundamental period, and

modulation indices. In doing so, operation at a fixed switching

frequency—which is an integer multiple of the fundamental—

and a deterministic harmonic spectrum are achieved. Since

OPPs are computed assuming steady-state operating condi-

tions, when applied to a converter, the best possible steady-

state performance is realized in terms of current THD [11].

However, using OPPs with a fast controller is a challenging

task, implying that when employed in a closed-loop setting

poor dynamic performance results. MPC with OPPs is there-

fore quite appealing since it can take advantage of the excellent

steady-state performance and low current distortions attributed

to OPPs as well as the fast dynamic responses during transients

that can be achieved with MPC.

In this direction, [12] proposed a controller based on a

stator current trajectory tracking approach. In this method,

the steady-state current trajectory is derived based on the

OPP in use and it is ensured that the actual current vector

follows it. As an alternative, [13] proposed a controller using

stator flux trajectory. Although this control method offers good

performance, it requires a complicated observer structure to re-

construct the flux quantities. Moreover, these control schemes

do not employ a receding horizon that provides feedback and

enhances their robustness. On the other hand, [14] and [15]

fully exploit the benefits of OPPs and MPC. Specifically,

the stator currents have very low harmonic distortions—and

as close to their theoretical minimum as possible—while the

dynamic performance is on par with that of high-bandwidth

controllers such as direct torque control (DTC) [16]. Exten-

sion of this method, however, to more complex systems and

multiple control objectives is not straightforward.

Motivated by the above, an OPP-based MPC algorithm—

named gradient-based predictive pulse pattern control

(GP3C)—is proposed in this paper that, similar to [9], utilizes

the gradients of the controlled variables. By directly manip-

ulating the switching time instants of the offline-computed

nominal OPP in use, favorable steady-state and dynamic

operation are achieved. Moreover, formulating the optimiza-

tion problem underlying MPC based on the gradients of the

controlled variables equips the controller with high versatility

and modularity. To highlight the potential of the proposed

method, a low-voltage drive system consisting of a two-level

voltage source inverter and an induction machine serves as a

simple case study.

II. DRIVE SYSTEM

Throughout this paper the quantities are normalized and

presented in the per unit (p.u.) system. The modeling of the
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Fig. 1: Two-level three-phase voltage source inverter driving an IM.

drive system and the formulation of the control problem are

carried out in the stationary orthogonal αβ-frame. Therefore,

any variable in the abc-plane ξabc = [ξa ξb ξc]
T is trans-

formed to a two-dimensional vector ξαβ = [ξα ξβ ]
T in the

αβ-plane1 via the operation ξαβ =Kξabc, where K is
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As an illustrative example of a low-voltage variable speed

drive system, consider a two-level inverter with the instan-

taneous (i.e., non-constant) dc-link voltage vdc (with average

value Vdc) driving an induction machine (IM), as shown in

Fig. 1. The output voltage of each phase can be −vdc/2 or

vdc/2 depending on the single-phase switch position ux ∈
{−1, 1}, with x ∈ {a, b, c}. As a result, the voltage applied to

the stator terminals vs, is given as

vs =
vdc

2
u =

vdc

2
Kuabc, (1)

where uabc = [ua ub uc]
T ∈ {−1, 1}3 is the three-phase

switch position.

Considering the squirrel-cage induction machine, its dynam-

ics can be described based on the stator current is, the rotor

flux ψr and the angular speed of the rotor ωr, i.e., [17]

dis

dt
= −

1

τs
is +

(

1

τr
I2 − ωr

[

0 −1
1 0

])

Xm

Φ
ψr +

Xr

Φ
vs

(2a)

dψr

dt
=
Xm

τr
is −

1

τr
ψr + ωr

[
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]

ψr (2b)

dωr

dt
=

1

H
(Te − Tℓ), (2c)

where Rs (Rr) is the stator (rotor) resistance, Xls (Xlr)

and Xm the stator (rotor) leakage and mutual reactances,

respectively. The moment of inertia is denoted by H , while

Te and Tℓ are the electromagnetic and mechanical load

torque, respectively. Moreover, τs = XrΦ/(RsX
2
r +RrX

2
m)

and τr = Xr/Rr are the stator and rotor transient time

constants, respectively, while the constant Φ is defined as

Φ = XsXr−X
2
m, with Xs = Xls+Xm and Xr = Xlr+Xm.

Finally, I2 is a two-dimensional identity matrix.

From (1) and (2), the continuous-time state-space model of

1Hereafter, all variables in the abc-plane are denoted by their corresponding
subscript, whereas the subscript is omitted for those in the αβ-plane to
simplify the notation.

the drive system is written as

dx(t)

dt
= Fx(t) +Guabc(t) (3a)

y(t) = Cx(t), (3b)

where x = [isα isβ ψrα ψrβ ]
T ∈ R

4 and y = [isα isβ ]
T ∈

R
2 are the state and output vectors, respectively, and the three-

phase switch position uabc is the input vector. Moreover, F ∈
R

4×4, G ∈ R
4×3, and C ∈ R

2×4 are the system, input and

output matrices, respectively, which characterize the system

and can be derived using (2), see [5, Appendix 5.A]. Note

that, compared with is and ψr, ωr changes slowly, thus it is

not considered as state of the drive model, but rather a (slowly)

varying parameter.

Using exact discretization with a sampling interval Ts, the

discrete-time state-space model of the system (3) becomes

x(k + 1) = Ax(k) +Buabc(k) (4a)

y(k) = Cx(k), (4b)

with A = e
FTs and B = −F−1(I4 − A)G, since F is

nonsingular. Here, e is the matrix exponential, and k ∈ N

denotes the discrete time step.

III. OPTIMIZED PULSE PATTERNS

In this section the basic properties of OPPs are briefly

explained. Moreover, the derivation of the stator current refer-

ence trajectory to be used in the MPC algorithm is presented.

A. Basic Properties

OPPs enable the operation of a converter at very low

switching frequencies with high quality output currents [5],

[18]. As mentioned before, the optimization problem for the

OPP calculation is designed such that it minimizes the THD of

the stator current [8]. The result of this optimization procedure

is a set of switching angles as a function of the modulation

index which defines the OPP p(d,m) as shown in Fig. 2(a).

The notation p(d,m) indicates that the OPP is a function

of the pulse number d, i.e., the number of single-phase

switching transitions and, consequently, switching angles in

the first quarter of the fundamental period (θ ∈ [0, 90◦]), and

modulation index m ∈ [0, 4/π]. Fig. 2(b) shows a single-phase

two-level OPP, while the corresponding three-phase OPP is

shown in Fig. 2(c). The latter is obtained by using quarter-

and half-wave symmetry and further shifting the single-phase

pattern by 120◦ and 240◦ for phases b and c, respectively.

B. Stator Current Trajectory

By applying an OPP to the inverter, the stator current with

the lowest distortions is produced. Hence, the resulting current

can be considered as a reference for the MPC algorithm pre-

sented in Section IV. Specifically, the stator current reference

trajectory is,ref is a combination of the fundamental is1,ref and

the harmonic ish,ref component, i.e.,

is,ref = is1,ref + ish,ref . (5)
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(c) Three-phase OPP; d = 5,m = 1.049.

Fig. 2: Optimized pulse pattern (OPP) p(d,m) for a two-level converter with d = 5 switching angles per quarter of the fundamental period. The single- and three-phase pulse

patterns correspond to the modulation index m = 1.049. The optimal switching angles for m = 1.049 are indicated by (black) circles.
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Fig. 3: Harmonic model of an induction machine in the p.u. system.
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Fig. 4: Current reference trajectory for the OPP shown in Fig. 2. The blue line in (a)

highlights ish,ref for one-sixth of the fundamental period. The red (dash-dotted) line in

(b) is the fundamental component is1,ref of the stator current.

In (5), the fundamental component is1,ref is produced by

an outer loop, while the harmonic component ish,ref can be

computed by performing Fourier analysis on the OPP in use.

To this end, the harmonic model of the induction machine

shown in Fig. 3 can be used, where Xσ = Φ/xr is the

total leakage reactance. As shown in [5, Section 3.4], by

neglecting the stator resistance, the current harmonics that

result by applying the three-phase OPP uabc(θ) are given by

îs,n =
Vdc

2Xσ

ûn
nω1

, (6)

where ûn is the amplitude of the nth voltage harmonic

and ω1 = 2πf1 is the fundamental angular frequency. By

performing the discrete Fourier transform of the switching

pattern uabc(θ), the amplitudes ûn and respective phases φ̂n of

the voltage harmonics are calculated. Therefore, the harmonic

current component of the reference trajectory can be computed

as

ish,ref(θ) =
∑

n=5,7,...,Nh

îsn sin(nθ − φ̂n) , (7)

where the harmonic order n is a non-triplen odd integer, and

Nh the maximum harmonic number to be included in the

current reference. It is worth mentioning that due to the fact

that the harmonic current repeats every 60◦, it is calculated

only for one-sixth of the fundamental period. The complete

harmonic current trajectory is formed by simply adding the

other five 60◦ sections, each one rotated by 60◦ with respect

to the previous section. To visualize this, Fig. 4(a) shows

the harmonic current trajectory corresponding to the OPP

in Fig. 2, with a 60◦ section highlighted for better insight.

Finally, the calculated harmonic component is superimposed

on the fundamental component according to (5) to generate

the current reference trajectory is,ref shown in Fig. 4(b).

IV. GRADIENT-BASED PREDICTIVE PULSE PATTERN

CONTROL ALGORITHM

The basis of the proposed control approach lies in the

combination of OPPs [8], [10] with gradient-based direct

MPC [9], [19]. In doing so, excellent steady-state performance

is achieved, while the slow dynamics associated to OPPs when

used in a closed-loop setting are overcome. In the sequel of this

section, the basic principles of the proposed control strategy

are presented.

A. Control Problem

The objectives of the controller are twofold. At steady-state

operation, accurate tracking of the stator current reference

trajectory is required so that the resulting current has as low



harmonic distortions as possible. Moreover, during transients,

the controller should exhibit fast dynamic responses with very

short settling times.

To achieve the aforementioned control objectives, the con-

troller is formulated as a constrained optimal problem with

a receding horizon policy. A prediction horizon Tp of finite

length is selected, and the goal is to modify the z ∈ N

switching time instants of the nominal OPP that fall within

Tp, such that the rms error of the stator current is minimized.

To this end, we introduce the vectors

tref =
[

t1,ref t2,ref . . . tz,ref

]T
, (8a)

U =
[

uT
abc(t0) uT

abc(t1,ref) . . . uT
abc(tz,ref)

]T
, (8b)

t =
[

t1 t2 . . . tz
]T
. (8c)

where tref ∈ R
z is the vector of switching time instants of the

nominal OPP within Tp, U ∈ {−1, 1}3(z+1) is the vector of

the corresponding OPP switch positions,2 and t ∈ R
z includes

the to-be-computed (i.e., modified) switching time instants.

Given the above, the objective function that takes into

account the weighted (squared) rms error of the stator current

and the changes in the switching time instants of the nominal

OPP is

J =
1

Tp

(

∫ Tp

0

‖is,ref(t)− is(t)‖
2
2 dt

)

+ ‖∆t‖2R , (9)

where the minimization of the current (rms) tracking error is

equivalent to minimizing the THD of the stator current [9].

Moreover, ∆t = (tref − t) are the (to-be-applied) modifica-

tions on the nominal OPP. Note that R in (9) is a positive

definite, diagonal matrix whose entries penalize the deviation

of the computed switching time instants t with respect to the

nominal OPP switching time instants tref.
3 Finally, it is worth

pointing out that the prediction horizon consists of multiple

subintervals, i.e., [0, t1,ref), [t1,ref, t2,ref), [t2,ref, t3,ref), . . . , and

[tz,ref, Tp).

As explained in [9] and [19], since function (9) is a cubic

function of time, the associated control problem is nonconvex.

To bring it into a convex form, a simplification is made in (9),

namely, instead of accounting for the (weighted) rms error, the

deviation only at the OPP switching time instants is penalized.

Provided that the prediction horizon Tp is long enough to

include at least two switching instants, this simplification

estimates the rms error accurately enough. In doing so, the

objective function becomes quadratic, i.e.,

J =
z
∑

i=1

‖is,ref(ti,ref)− is(ti,ref)‖
2
2 + ‖∆t‖2R . (10)

In a next step, function (10) has to be minimized for the

sequence of OPP switch positions U , as defined in (8b), to

yield the modified switching time instants t. To do so, the

evolution of the stator current is within each subinterval of

the prediction horizon has to be computed for each of the

2Note that the first entry of U is the switch position applied at the end of

the last sampling interval, i.e., uabc(t
−

0
).

3The ‖ξ‖2
R

denotes the squared norm of a vector ξ weighted with the
matrix R.
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Fig. 5: Example of the evolution of one controlled variable (e.g., stator current isα)

within a four-step (Tp = 4Ts) prediction horizon by applying the depicted pulse pattern.

Both the nominal OPP and the modifications introduced by the controller are shown.

In the bottom figure, the dash-dotted (magenta) line represents the current (linearized)

trajectory when applying the nominal OPP, while the solid (green) line shows the

(linearized) current trajectory based on the modified pulse pattern.

OPP switch positions uabc within Tp. To simplify this task,

and given that the prediction horizon Tp is small compared

to the fundamental period T1, i.e., Tp ≪ T1, it is assumed

that the stator current evolves linearly within each subinterval.

Therefore, the stator current trajectories within the subintervals

can be described by their corresponding gradients, i.e.,

m(ti,ref) =
dis(ti,ref)

dt
= C(Fx(ti,ref)+Guabc(ti,ref)) , (11)

where i ∈ {0, 1, 2, . . . , z}. Note that, as can be seen in (11),

the gradients at the optimal OPP switching instants t1,ref,

t2,ref, . . . , tz,ref depend on the respective state, i.e., x(t1,ref),
x(t2,ref), . . . , x(tz,ref), respectively, to provide an as accurate

computation of the corresponding gradient as possible.

As explained in [9], with (11), function (10) can be written

in vector form as

J = ‖r −Mt‖22 + ‖∆t‖2R , (12)

where r ∈ R
2z depends on the reference values and measure-

ments of the stator current, while the entries of M ∈ R
2z×z

depend on the slopes with which the stator current evolves

within the prediction horizon. Both r and M are given in the

appendix. For a better understanding, the following example

is given.

Example 1: Consider the drive system in Fig. 1. As de-

picted in Fig. 5, uabc(t
−
0 ) = [1 1 1]T , with t0 ≡ kTs,

was applied at the end of the previous sampling interval.

According to the illustrated OPP, four nominal switching

time instants t1,ref, t2,ref, t3,ref, and t4,ref, with switch positions

uabc(t1,ref), uabc(t2,ref), uabc(t3,ref), and uabc(t4,ref), respec-

tively, fall within the prediction horizon Tp. The corresponding

continuous-time evolution of one of the controlled variables,

e.g., isα (dash-dotted, magenta line), is shown along with its

sampled reference (dotted, black line). The stator current is

assumed to evolve linearly with a constant slope within each

subinterval.

B. Optimal Control Algorithm

The block diagram of the proposed GP3C algorithm is

shown in Fig. 6. Moreover, the pseudocode of the control
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Fig. 6: Block diagram of the gradient-based predictive pulse pattern control (GP3C) scheme.

Algorithm 1: Gradient-based predictive pulse pattern

control

Given uabc(t
−

0
), x(t0), is,ref,dq and p(d,m)

0. Extract the switching instants and switching sequences from p(d,m)
to formulate tref and U .

1. Compute the current reference trajectory Yref(ti,ref), i ∈ {1, 2, . . . , z}.

2. Formulate the gradient vectors m(ti,ref), i ∈ {1, 2, . . . , z}.

3. Solve the optimization problem (13). This yields t∗.

Return t∗(k) that fall within Ts and modify the OPP accordingly

method is summarized in Algorithm 1. The algorithm is

designed in the discrete-time domain, and executed at the

discrete time instants kTs. The angular electrical stator and

rotor frequencies of the machine are ωs and ωr, respectively.

In a preprocessing step, the modulation index m is computed

based on the instantaneous value of the low-pass filtered dc-

link voltage v̂dc. With m and the desired pulse number d, the

switching angles and structure of the offline-computed nominal

OPP p(d,m) are retrieved from the respective look-up tables

(LUTs). By using ωs to convert the switching angles into

time instants, the three-phase OPP is generated. The control

algorithm comprises of the following steps, that are executed

at the time instant kTs.

Step 1. The rotor flux ψr is estimated by the observer using

the measurements. Let ∠ψr denote the angle of ψr and Ψr

its magnitude. The estimated rotor flux angle ∠ψr is utilized

for proper alignment of the OPP with the position of ψr.

Step 2. From the three-phase OPP, the nominal switch-

ing instants ti,ref and the corresponding switch positions

uabc(ti,ref) that fall within the prediction horizon Tp are

extracted. The dimension of the vector tref specifies two

things, namely, the size of the optimization problem (i.e., the

dimension of the optimization variable t), and the number of

(not necessarily unique) stator current slopes that need to be

computed.

Step 3. The stator current reference trajectory is,ref is

computed over the prediction horizon. Given that the outer

loop generates the fundamental component of the current

reference in the dq-frame, is1,ref is computed using ∠ψr.

Thereafter, the complete reference trajectory is generated by

computing the fundamental component at the time instants

of the vector tref and subsequently adding the corresponding

harmonic current component stored in the LUT ish,ref(d,m).
The output of the reference computation block contains the

stator reference vectors over the prediction horizon, i.e., Yref =
[iTs,ref(t1,ref) i

T
s,ref(t2,ref) . . . iTs,ref(tz,ref)]

T .

Step 4. The gradient-based matrix M is formulated by

computing the possible stator current gradients using (11). The

stator current gradients depend on the measured and estimated

states, the nominal switching instants tref, and the nominal

OPP switch positions U .

Step 5. The GP3C problem of minimizing the stator cur-

rent error within the prediction horizon by manipulating the

switching instants of the nominal OPP can be formulated

as an optimization problem. With the simplified objective

function (12), this optimization problem takes the form

minimize
t∈Rz

‖r −Mt‖
2
2 + ‖∆t‖

2
R

subject to kTs < t1 < · · · < tz < kTs + Tp .
(13)

Problem (13) is a convex quadratic program (QP) which can

be efficiently solved with existing off-the-self solvers, see,

e.g., [4, Section IV]. Note that the switching instants are

constrained by the order of the switching times, the current

time instant kTs and the end of the horizon kTs + Tp.

Therefore, the switching time instants cannot be modified

arbitrarily. The solution to the optimization problem (13),

called the optimizer, is the vector of the optimally modified

switching time instants t∗. Moreover, it is worth mentioning

that the nonzero (i.e., diagonal) entries of R are selected such

that the current reference tracking is not compromised so that

operation as close to the nominal OPP as possible is achieved.

Step 6. The required modifications on the OPP switching

sequence that fall within the first step of the prediction horizon,

i.e., the first Ts, are implemented, and the shifted switch

positions of the OPP uabc are applied to the converter at the

computed time instants t∗.
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Fig. 7: Simulation results produced by the proposed GP3C algorithm at steady-state operation, nominal speed and rated torque. The modulation index is m = 1.049, the pulse

number d = 10, and the switching frequency is 1050Hz.
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Fig. 8: Simulation results produced by FOC with SVM at steady-state operation, nominal speed and rated torque. The switching frequency is 1050Hz.
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(b) Three-phase switching pattern uabc for FOC.
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Fig. 9: The three-phase switching pattern during steady-state operation for (a) GP3C and (b) FOC with SVM. (c) The stator current THD as a function of the switching frequency

for FOC with SVM and GP3C (operation at nominal speed and rated torque).

Finally, the horizon is shifted by one sampling interval and

the whole procedure is recomputed over the shifted horizon

based on new measurements and an updated OPP as per the

receding horizon policy [5].

Example 2: Consider the pulse pattern U over the prediction

horizon shown in Fig. 5. The switching time instants t1,ref –

t4,ref of the depicted part of the OPP are modified in such a

manner that the error between the controlled variable (stator

current) and its reference is minimized. The corresponding

evolution of the stator current is shown in green, while the

sampled reference is shown with a dotted, black line. The

(modified) pattern that falls within the first sampling interval

Ts—shown in red in Fig. 5—is applied to the inverter and the

horizon is shifted by one Ts.

V. PERFORMANCE EVALUATION

In this section, the performance of the proposed

GP3C scheme is assessed for the drive system shown in Fig. 1

using simulations. The inverter is supplied by a six-pulse

rectifier with an average dc-link voltage Vdc = 650V (voltage

ripple peak-to-peak = 91.2V). The squirrel-cage IM is rated

at 400V rms line-to-line voltage, 4.4A rms phase current,

3 kVA apparent power, 50Hz nominal stator frequency and it

has a total leakage reactance Xσ = 0.128 p.u. The sampling

interval is Ts = 50 µs and the prediction horizon Np = 15.

The OPP in use has a pulse number d = 10, i.e., the device

switching frequency is 1050Hz, while the modulation index

is m = 1.049.

The steady-state performance of the drive is shown in

Figs. 7 and 9(a), where operation at nominal speed and

rated torque is considered. As can be seen in Fig. 7(a), the

three-phase stator current waveforms—illustrated over one

fundamental period—accurately track their references. The

resulting current spectrum is shown in Fig. 7(b). Current

harmonics are located at odd and non-triplen integer multiples

of the fundamental frequency. The THD, which quantifies the

current tracking performance of the controller, is 9.59%, i.e.,

it is low considering the switching frequency of 1050Hz and

the relatively low total leakage reactance. Fig. 7(c) shows the

electromagnetic torque and Fig. 9(a) shows the three-phase

switching pattern generated by the controller.

For comparison purposes, field oriented control (FOC) with
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Fig. 10: Simulation results produced by the proposed GP3C algorithm during torque reference steps. The pulse number is d = 10 and switching frequency is 1050Hz.
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(b) Three-phase switching pattern uabc.
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Fig. 11: Simulation results produced by FOC with SVM during torque reference steps. The switching frequency is 1050Hz.
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Fig. 12: Transient performance of GP3C at rated speed during a torque reference (a)–(c) step-down change, and (d)–(f) step-up change. In (b) and (e), the (black) dash-dotted lines

refer to the switching sequence of the unmodified, nominal OPP, whereas the solid lines correspond to the modified switching sequence as computed by GP3C.

space vector modulation (SVM) is also implemented. The

switching frequency is the same as that of GP3C, i.e., 1050Hz,
and the proportional-integral (PI) controllers of FOC are tuned

using the modulus optimum method. The waveforms generated

by FOC are shown in Figs. 8 and 9(b). From the stator

current waveform in Fig. 8(a), it is readily apparent that FOC

has significantly higher current ripple compared to GP3C.

Correspondingly, the harmonic components in the current

spectrum (see Fig. 8(b)) are higher, particularly the 5th, 7th, and

sideband harmonics around the switching frequency. The 5th

and 7th harmonics are pronounced due to the fact that the dc-

link contains a voltage ripple of 300Hz. Moreover, the current

THD of 15.85% is clearly worse than that of GP3C.

Finally, to further highlight the benefits of GP3C during

steady state, Fig. 9(c) compares its performance with that of

FOC in terms of current THD over a wide range of switching

frequencies. As can be inferred, to achieve a current THD of

about 11.6%, FOC requires a switching frequency of at least

1500Hz, whereas GP3C requires only 850Hz. Hence, GP3C

allows for a reduction of the switching frequency by 43%.

Consequently, the switching power losses can be significantly

reduced, resulting in an increase in the overall efficiency

of the drive system. It can be concluded that GP3C (in

comparison to FOC) effectively reduces the current distortions



by almost 40%, while also rejecting the adverse effect of the

low frequency dc-link voltage ripple.

Figs. 10 and 11 compare the performance of the two control

schemes during transients. While operating at nominal speed,

reference torque steps of magnitude 1 p.u. are imposed, and

the reference torque is translated into the corresponding stator

current reference. As can be seen in Fig. 10(a), the stator

currents accurately track their new reference values without

any overshoot/undershoot, resulting in a good torque reference

tracking, see Fig. 10(c). On the contrary, FOC suffers a visible

undershoot in the torque as shown in Fig. 11. As expected, the

dynamic performance of the modulator-based, linear control

scheme is slightly slower than that of the MPC-based strategy.

The transient performance of GP3C is shown in more detail

in Fig. 12. When applying the torque step-down, a phase-shift

of −6.77◦ is introduced into the nominal OPP, which is equiva-

lent to shifting the nominal OPP by 0.3761ms forward in time.

To track the references, additional volt-second contributions

are required from the three-phases. As shown in Fig. 12(b),

GP3C achieves this by shortening the pulses in phases a

and c, and lengthening the pulse in phase b. The resulting

torque settling time is less than 2ms. Similar behavior is

observed during the torque reference step-up change. As can

be observed, the proposed controller inherits the favorable

dynamic behavior of MPC by appropriately modifying the

nominal OPP to remove the torque error as quickly as possible.

VI. CONCLUSIONS

This paper proposed an MPC scheme, called GP3C, for a

low-voltage drive that employs OPPs. As shown, the proposed

controller has two features, namely, optimal performance

during steady state, i.e., minimal current THD for a given

switching frequency, and very short settling times during

transients. To do so, principles of constrained optimal control

are employed that enable the controller to modify the OPP

in an optimal manner in real time. Moreover, the adoption

of a receding horizon policy provides GP3C with the ability

to achieve superior dynamic performance during transients.

Thanks to these characteristics, GP3C can outperform con-

ventional control solutions, such as FOC with SVM.

APPENDIX

The vector r and matrix M in (10) are

r =















is,ref(t1)− is(t0)
is,ref(t2)− is(t0)
is,ref(t3)− is(t0)

...

is,ref(tz)− is(t0)















and

M =



















mt0 02 02 . . . 02

m0 mt1 02 . . . 02

m0 m1 mt2 . . . 02

...
...

...
. . .

...

m0 m1 m2 . . . mtz−1

m0 m1 m2 . . . mz−1



















with

mtℓ =m(tℓ,ref)

mℓ =m(tℓ,ref)−m(tℓ+1,ref)

where ℓ ∈ {0, 1, 2, . . . , z − 1}.
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