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Abstract— Given a Model Predictive Control (MPC) prob-
lem for a hybrid system in the Mixed Logical Dynamical
(MLD) framework, a temporal decomposition scheme is pro-
posed that efficiently derives the control actions by performing
Lagrangian decomposition on the prediction horizon. The
algorithm translates the original optimal control problem into
a temporal sequence of independent subproblems of smaller
dimension. The solution of the Lagrangian problem yields
a sequence of control actions for the full horizon that is
approximate in nature due to the non-convexity of the hybrid
optimal control problem formulation and the consequent
duality gap. For cases, however, where the duality gap is
sufficiently narrow, the approximate control law will yield
almost the same closed-loop behavior as the one obtained from
the original optimal controller, but with a considerably smaller
computational burden. An example, for which a reduction of
the computation time by an order of magnitude is achieved,
illustrates the algorithm and confirms its effectiveness.

I. INTRODUCTION

Model Predictive Control (MPC) is a control method-
ology, in which the current control action is obtained by
solving at each sampling instant an open-loop optimal
control problem over a finite horizon using the current
state of the plant as the initial state. The underlying opti-
mization procedure yields an optimal control sequence that
minimizes a given objective function. By only applying the
first control move in this sequence and by recomputing the
control sequence at the next sampling instant, a receding
horizon policy is achieved. A major advantage of MPC
is its ability to cope with hard constraints on manipulated
variables, states and outputs. Furthermore the Mixed Logic
Dynamical (MLD) framework can be embedded in MPC
allowing one to use hybrid models given in the MLD form
as prediction models [2].

In recent years, MPC has become a prominent control
technique especially in the chemical process industry, be-
cause the large time constants typically involved in these
applications allow for a reasonable computation time for
the on-line optimization. For systems featuring smaller time
constants, however, this may not always be possible because
of the complexity of the calculations. One possibility is to
compute an off-line solution to the optimization problem as
a function of the state resulting in a lookup table. Then, at
each time instant the determination of the optimal feedback
law is performed by the simple evaluation of a function [1],
[3]. However, in particular for hybrid systems, such an
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approach is computationally feasible only for problems with
a low-dimensional state and a short prediction horizon.

Another approach to circumvent the complexity obstacle
is to decompose the prediction horizon into a sequence
of several sub-horizons. A natural choice to do so is to
employ Lagrangian decomposition, which has been used
successfully in a variety of circumstances for the purpose of
translating an originally complex problem formulation into
a simpler version consisting of a series of smaller disjoint
elements. In the present paper, temporal decomposition
is done by relaxing some of the state-update equations
and adding them to the cost function as penalty terms
multiplied with the Lagrangian (or dual) variables. The
obtained disjoint problems constitute the primal subprob-
lems and may be tackled independently, therefore reducing
the computation time. The dual variables provide the link
between the subproblems, and are determined by solving
the dual problem.

It seems that such an approach based on temporal decom-
position has not been attempted for MPC as yet. Neverthe-
less, in the context of planning and scheduling, temporal
decomposition techniques have been used successfully, see
e.g. [11].

As an illustrative example and case study, the optimal
control problem of a four bus power system [9] is consid-
ered. In particular, the power system comprises a hybrid
system featuring binary manipulated variables, a finite state
machine and continuous dynamics. Compared to the origi-
nal problem, the Lagrangian decomposition scheme shows
favorable computation times which are reduced by an order
of magnitude. Furthermore, in this example, the optimal
control laws obtained from the decomposed and from the
original problem coincide. In any case, as increasing the
prediction interval in the context of generic hybrid systems
quickly renders the related optimal control problems com-
putationally intractable, it is to be expected that the gain in
computational performance would be significant.

This paper is organized as follows. In Section II, the
MLD framework is recapitulated and the optimal control
problem is posed. Subsequently, Lagrangian decomposition
is briefly summarized, and the proposed temporal decom-
position scheme is presented in detail in Section III. Section
IV features the numerical application to the voltage control
problem exemplifying the efficacy of the aforementioned
algorithm.

43rd IEEE Conference on Decision and Control
December 14-17, 2004
Atlantis, Paradise Island, Bahamas

0-7803-8682-5/04/$20.00 ©2004 IEEE

WeC06.6

2509



II. OPTIMAL CONTROL OF HYBRID SYSTEMS

Consider a hybrid system modelled in the Mixed Logic
Dynamical (MLD) framework [2]

x(k + 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k) (1a)

y(k) = Cx(k) + D1u(k) + D2δ(k) + D3z(k) (1b)

E2δ(k) + E3z(k) ≤ E1u(k) + E4x(k) + E5 , (1c)

where k ∈ N denotes the discrete time-instant, and x ∈
R

nc × {0, 1}n� denotes the states, u ∈ R
mc × {0, 1}m�

the inputs and y ∈ R
pc × {0, 1}p� the outputs, with both

real and binary components. Furthermore, δ ∈ {0, 1}r�

and z ∈ R
rc represent binary and auxiliary continuous

variables, respectively. These variables are introduced when
translating propositional logic or piecewise affine (PWA)
functions into linear inequalities.

Consider the constrained optimal control problem

min
UN

J(x(0)) =

N−1∑
k=0

||Q1(u(k) − ur)||∞+

||Q2(δ(k) − δr)||∞ + ||Q3(z(k) − zr)||∞+

||Q4(x(k) − xr)||∞ + ||Q5(y(k) − yr)||∞ (2a)

s. t. (1)

umin ≤ u(k) ≤ umax (2b)

xmin ≤ x(k) ≤ xmax , (2c)

where N is the prediction horizon, Q1, ..., Q5 are posi-
tive semi-definite weighting matrices, xr, ur, yr, δr, zr

are the respective references, x(k) is the state predicted
at time-step k resulting from the input sequence UN =
[uT (0), ..., uT (N −1)]T starting from the state x(0), umin,
umax, xmin, xmax are hard constraints on the inputs and the
states respectively and || · ||∞ represents the infinity norm
defined according to the usual relation ||v||∞ = maxi |vi|.

Let U∗

N denote the optimal input sequence that minimizes
J(x(0)). According to the receding horizon policy, only the
first control move

u(0) = U∗(0) (3)

is applied, and the whole optimization procedure is repeated
at time-step k + 1.

The MPC formulation can be rewritten [1]
as a Mixed Integer Linear Program (MILP) by
introducing the vector of slack variables ε =
[εu

0 , ..., εu
N−1, ε

δ
0, ..., ε

δ
N−1, ε

z
0, ..., ε

z
N−1, ε

x
0 , ..., εx

N−1, ε
y
0 ,

..., εy
N−1]

T , that satisfies for k = 0, 1, ..., N − 1

1mεu
k ≥± Q1(u(k) − ur) (4a)

1r�
εδ
k ≥± Q2(δ(k) − δr) (4b)

1rc
εz
k ≥± Q3(z(k) − zr) (4c)

1nεx
k ≥± Q4(x(k) − xr) (4d)

1pε
y
k ≥± Q5(y(k) − yr) (4e)

where 1i denotes a column vector of ones of length i, and
m = mc + m�, n = nc + n�, p = pc + p�. It can be

proven [5], that if the vector ε satisfies (4) and minimizes
the cost function

Jε(x(0)) = 1T
5N ε (5)

also solves the original problem (2), i.e. leads to the same
optimum J∗

ε (x(0)) = J∗(x(0)). Therefore, the original
problem can be recast accordingly.

III. TEMPORAL LAGRANGIAN DECOMPOSITION OF

HYBRID SYSTEMS

A. Introduction to Lagrangian Decomposition

Consider the MILP primal problem in the

min
x1,x2

F = fT
1 x1 + fT

2 x2 (6a)

s. t. A1x1 ≤ b1, C1x1 = d1 (6b)

A2x2 ≤ b2, C2x2 = d2 (6c)

G1x1 + G2x2 = d (6d)

where x1, x2 may be both real and integer variables. Such
a problem would be decomposable into two independent
primal subproblems featuring the variables x1, x2 were it
not for the presence of the equality constraint (6d). In this
case, a Lagrangian decomposition scheme precisely yields
such a decomposability property. More specifically, consider
the problem

min
x1,x2

L(λ) = fT
1 x1 + fT

2 x2+

λT (G1x1 + G2x2 − d) (7a)

s. t. (6b), (6c) (7b)

where λ are the dual variables associated with the relaxed
constraint (6d) and where L(x1, x2) is the Lagrangian cost
function. For a given λ, the relaxed problem (6) can be
separated into the two disjoint subproblems

min
x1

L1(λ) = fT
1 x1 + λT G1x1 −

λT d

2
(8a)

s. t. A1x1 ≤ b1, C1x1 = d1 (8b)

and

min
x2

L2(λ) = fT
2 x2 + λT G2x2 −

λT d

2
(9a)

s. t. A2x2 ≤ b2, C2x2 = d2 (9b)

that can be solved independently of each other.
It is well known from mathematical programming the-

ory [7] that the value of L(λ) corresponding to an arbitrary
value of λ yields lower bounds to the optimum of the
original primal problem. It is therefore of interest to obtain
the best possible lower bound, that is to solve the problem

Z∗ = max
λ

(min
x1,x2

L(λ)) (10)

over the unconstrained dual variable state space. Problem
(10) is referred to as the dual problem, and

Z = min
x1,x2

L(λ) (11)
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represents the dual function, which is known to be concave
and non-differentiable [4]. If the original problem (6) had
been convex, the solution to (10) would produce a value
of (11) equal to the optimum of (6), i.e. Z∗ = F ∗, and
correspondingly a set of dual variables λ to which the
optimal x∗

1 and x∗

2 would be associated. In the case of an
MILP, the problem is non-convex. Therefore, the solution
to (10) will yield a bound that is strictly inferior to the
optimum of (6), i.e. Z∗ < F ∗, and correspondingly x1

and x2 that are in general infeasible with respect to (6d).
The usual strategy in Lagrangian decomposition methods is
then to solve the dual to near optimality by means of some
iterative method to obtain good lower bounds. Subsequently,
a heuristic method is devised to generate solutions satisfying
(6d) that are therefore solutions to (6) and whose cost
represents an upper bound for (6a) [6].

B. Temporal Lagrangian Decomposition

The foregoing methodology turns out to be opportunely
practicable when considering temporal decomposition of
MPC problems: the prediction horizon inherent in the MILP
formulation can be partitioned into independent subhorizons
by relaxing the system state update equation (1a) as was
done for (6d) above. The new problem, consisting of the
minimization of the augmented cost function subject to
the reduced set of constraints, may now be conveniently
reformulated as a set of independent primal subproblems
of reduced dimension. More specifically, let I ∈ {1, ..., N}
be the number of blocks in which one chooses to divide
the prediction horizon and i ∈ {1, ..., I} the block in-
dices, where i = 1 denotes the first time block. Mi ∈
{0, ..., N−2} shall be the position in the prediction horizon
corresponding to the beginning of the i-th time block, where
x(M1) = x(0). The length or duration of the i-th time
block is di = Mi+1 − Mi for i ∈ {1, ..., I − 1}, and
dI = N − 1 − MI .

Dualizing (1a) yields the Lagrangian function

L(λ) = Jε(x(0)) +
I∑

i=2

λT
i (x(Mi) − g(Mi − 1)) , (12)

where it has been set

g(Mi − 1) =Ax(Mi − 1) + B1u(Mi − 1)

+ B2δ(Mi − 1) + B3z(Mi − 1)) (13)

and where λi is the vector of dual variables of the con-
straint (1a) that connects the (i− 1)-th with the i-th block,
and λ = [λT

2 , ..., λT
I ]T . Let εi denote the slack variables

contained in the i-th subproblem. Setting

Jε = 1T
5N ε =

I∑
i=1

1T
5di

εi (14)

allows one to separate (12) into independent subproblems
each referring to one time block, i.e.

L(λ) = L1(λ) +

I−1∑
i=2

Li(λ) + LI(λ) , (15)

where

L1(λ) =1T
5d1

ε1 − λT
2 (g(M2 − 1)) (16)

Li(λ) =1T
5di

εi − λT
i+1(g(Mi+1 − 1)) + λT

i x(Mi) (17)

and

LI(λ) = 1T
5dI

εI + λT
I x(MI) . (18)

C. Formulation of the Primal Subproblems

The remaining system constraints in (1), and the con-
straints (4), (2b) and (2c) can also be partitioned into
different subproblems pertaining to the respective time
blocks, similarly as has been done for (8b) and (9b). The
first subproblem corresponding to the first block is:

min
ε1

L1(λ) (19)

subject to the constraints (1), (4), (2b) and (2c) pertaining
to the first time block. The subsequent subproblems with
i ∈ {2, 3, ..., I} relative to the following blocks are:

min
εi,x(Mi)

Li(λ) (20)

subject to the constraints (1), (4), (2b) and (2c) pertaining
to the i-th time block.

The foregoing subproblems are now uniquely linked by
means of the dual variables λ whose value depends on the
solution of the dual problem.

D. Formulation and Solution of the Dual Problem

The dual is a concave, PWA and non-differentiable func-
tion. An implicit and iterative method for the solution of
the dual such as the subgradient method can be used.

In a subgradient algorithm, an initial value for the dual
variables is chosen arbitrarily, and the associated relaxed
problem is solved to compute a subgradient direction for
the dual variables and thus to modify the multipliers in
the computed direction. For the case of a dual function, a
possible subgradient D(λj) at iteration j is the set of the
relaxed constraints itself, that is

D(λj) = [DT
2 (λj), . . . , DT

I (λj)]T (21)

where it has been set

Di(λ
j) = xj(Mi) − gj(Mi − 1) (22)

in which all values correspond to the optimal solution of the
primal obtained with λj , see (12). In general, for a given
λj , Di(λ

j) is different from zero, and the corresponding
primal set of variables νj with

ν = [xT uT δT zT yT ]T , (23)

is infeasible.
In the following, the algorithm described in [10] will be

applied. Given λj , the multipliers for the next iteration step
are calculated by

λj+1 = λj + αjD(λj) , (24)
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with the step size αj being generated by

αj =
βj(J+ − Zj)

||D(λj)||2
. (25)

In (25), Zj is the value of the dual evaluated at λj

according to (11), and J+ is the current best upper bound
to the optimum of the original problem. In particular, J+

corresponds to the best feasible primal solution obtained
by means of some heuristic algorithm from the sequence
of generally infeasible νj . Furthermore, βj is a parameter
initially set to a value βj ∈ (0, 2) which is subsequently
reduced whenever Zj has failed to improve after a certain
number of iterations. The iterative procedure is interrupted
either after a certain number of fixed steps or whenever a
certain accuracy is attained in the duality gap between the
infeasible and feasible values, taking into account however
that this will be limited by the intrinsic duality gap of the
problem.

When solving the problem to optimality in a subsequent
branch and bound algorithm, J+ may be used as an upper
bound. Alternatively, the feasible input vector may be
implemented as a suboptimal input. Indeed, with the ap-
propriate problem setup, it is known that even a suboptimal
sequence of control inputs can ensure stability [2], [12].
In any case, the effectiveness of the employed heuristic
algorithm is of critical importance to ensure satisfactory
performance for the overall problem. Such an algorithm is
highly application specific. Assuming that no constraints
on states are present, one may simply collect all the inputs
uj computed from the subproblems (19) and (20). Applying
them to the MLD system leads to a feasible set of x, y, δ and
z by construction. If state constraints are given, however,
the above procedure cannot guarantee that these constraints
are respected for the entire horizon. In this case, a feasible
input sequence must be built according to the given problem
formulation; as an indication, one possibility might be to use
the inputs corresponding to the first subhorizon block (or
first few predictions steps) and then to re-optimize over the
remaining horizon tail to enforce feasibility.

IV. ILLUSTRATIVE EXAMPLE

A. Model Description

In [9], the authors have presented a novel emergency
control scheme based on MPC that successfully stabilizes
the voltage in an example power system with four buses. As
shown in Fig. 1, this power system contains two generators,
where the first one is an infinite bus or a large power system,
whereas the second generator includes an internal controller
regulating the voltage at bus 2 thus limiting the maximal
amount of reactive power. Also the transformer incorporates
an internal controller regulating the load voltage V4m within
a dead-band around the voltage reference V4m,ref . This
controller is a finite state machine and allows changes of
the tap position nT only every 30 s by one discrete step
of nstep = 0.02. In addition, by setting sC , discrete parts
of the capacitor bank can be used to support the power

bus 3

bus 1 bus 2

L3 L2

s

4mV

V3m

2mV

4m,refV

L1

C

Transf.

Gen. 2Gen. 1

Load

bank
Capacitor

s

L

bus 4

Fig. 1. Example power system with four buses.

system by producing reactive power close to the load. The
distribution system is approximated using one load model
aggregating the whole distribution system. Discrete parts of
the load can be disconnected by using load shedding sL.

Recapitulating [9], the MLD model is derived by per-
forming the following approximations and simplifications.
(i) The nonlinear continuous-time dynamics are approxi-
mated by PWA functions in the discrete-time domain using
the sampling time Ts = 30 s, (ii) the load dynamics are
simplified and modelled using only one load state xL,
(iii) the admissible sets of the input variables are reduced,
and (iv) the tapping strategy ∆nT ∈ {0, nstep,−nstep}
is used as a system input rather than the reference volt-
age V4m,ref . The resulting MLD model features the two-
dimensional state vector x = [xL nT ]T with x1 ∈ R and
x2 ∈ {0.8, 0.82, 0.84, . . . , 1.2}, the four-dimensional input
vector u = [u1 u2 sC sL]T with u ∈ {0, 1}4, where
u1 and u2 encode in a binary fashion ∆nT , the outputs
y = [V2m V3m V4m] with y ∈ R

3 representing the bus
voltages of main interest, 302 z-variables, 31 δ-variables
and 1660 inequality constraints.

B. Control Problem Formulation

The control objectives are (i) to bring V4m as close to
its reference value 1 as possible, (ii) to minimize switch-
ing transitions in the manipulated variables, and (iii) to
fulfill the safety constraints on the bus voltages V2m ∈
[0.95, 1.05], V3m ∈ [0.9, 1.1] and V4m ∈ [0.9, 1.1]. Mod-
elling these constraints as soft constraints using the slack
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variables si, i ∈ {2, 3, 4}, yields

s2(k) ≥ 0.95 − V2m(k) (26a)

s2(k) ≥ V2m(k) − 1.05 (26b)

s2(k) ≥ 0 , (26c)

The slacks s3 and s4 are defined accordingly. Furthermore,
let s = [s2 s3 s4]

T .
Consider the optimal control problem

min
UN

J(x(0), u(k − 1)) =
N−1∑
k=0

‖y3(k) − 1‖+

N−1∑
k=0

(
‖Q∆u(k)‖∞ + ‖Rs(k)‖∞

)

subject to the evolution of the MLD model (1) over the
prediction horizon N and the integrality constraints on
u(k), where UN = [uT (0), uT (1), . . . , uT (N−1)]T denotes
the sequence of control inputs, ∆u(k) = u(k) − u(k −
1) the change in the manipulated variables, and Q =
diag(0.2, 0.2, 0.03, 0.1) and R = diag(10, 10, 10) are the
corresponding penalty matrices. This choice of the penalties
will cause emergency actions including load shedding to be
triggered only if refraining from such measures would result
in a violation of the soft constraints. For more details on
the four bus power system, the reader is referred to [8], [9].

C. Temporal Lagrangian Decomposition

The proposed temporal Lagrangian decomposition
scheme can be directly applied to the voltage control
problem, as the model of the power system is given in
MLD form and the optimal control problem is formulated
using the ∞-norm. To test the performance of the presented
scheme, a prediction horizon of N = 6 is adopted and
decomposed into I = 4 separate blocks consisting of an
initial block of length d1 = 3 and of 3 successive blocks
of length d2 = d3 = d4 = 1. This choice largely depends
on computational experiments; indeed, intuitively it can be
assumed that employing a comparatively long initial block
is beneficial for an application to MPC problems, where the
quality of the first control move is essential for the overall
performance of the control scheme.

It should be noticed that for the on-line solution of the
MPC problem, the sampling interval Ts = 30s imposes
the maximum computation time available. Because of this
stringent condition, there is no time available to perform any
iterations in the dual variables on-line. Therefore, the dual
variables are pre-computed off-line for a given characteristic
state and are kept at the constant value λ̄. For this particular
example, it turns out that the optimal dual variables remain
rather unaffected by variations in the state. Therefore, λ̄
yields good results.

At each time step, the infeasible set of variables cor-
responding to λ̄ is evaluated, and starting from this a
feasible solution is built. As the power system does not
feature any (hard) constraints on states, one may – as

Full horizon Lagrangian scheme

Min. time [s] 100 16.8
Max. time [s] 486 25.2
Avg. time [s] 276 18.6

Min. γ [%] 6.3
Max. γ [%] 12.3
Avg. γ [%] 9.1

TABLE I

COMPARISON OF THE COMPUTATION TIMES FOR THE FULL PROBLEM

AT EACH SAMPLING INTERVAL AND THE LAGRANGIAN

DECOMPOSITION SCHEME WITH THE CORRESPONDING DUALITY GAP.

previously mentioned – simply retain the calculated input
variables and build a feasible solution set and cost value.
Other approaches are possible, and indeed, a better feasible
solution may be obtained by maintaining only the first few
inputs of the sequence and re-optimizing over the remaining
part of the horizon. According to the receding horizon
policy of MPC, from this feasible input sequence only the
first move is applied, and the same operation is repeated at
the next time instant.

D. Computation Results

The case study has been run considering exactly the same
operating conditions as in [9], with the line outage occurring
at time t = 100 s. The setup features a 2.8 GHz Pentium
running Matlab R13 and CPLEX 8.0 as MILP solver, and
solutions have been obtained and compared for both the
Lagrangian scheme and the full problem. These are reported
in Table 1, where the indicated time represents the required
computation time for a single sampling interval. The duality
gap γ in percentage terms of the Lagrangian scheme is
calculated as γ = 100(J+−Z̄)/Z̄, in which Z̄ corresponds
to the value of the dual evaluated at λ̄. As can be seen, the
temporal Lagrangian decomposition scheme yields compu-
tation times which are improved by an order of magnitude.
In particular, the maximum computation time is reduced by
a factor of 20 relative to the full problem. Most important,
it is less than the sampling interval allowing for an on-
line implementation of the control scheme. Furthermore,
the duality gap lies within a range of 10%.

It is worthwhile noting that for this model and for the
featured sequence of operating points the suboptimal J+

actually coincides with J∗, i.e. the optimum is in actual
fact obtained. This is partly due to the fact that the duality
gap is small and that the inputs are purely binary preventing
small deviations in the input variables that would otherwise
occur. Although not strictly representative of the intended
purpose of the presented algorithm, this result is consistent
with the fact that the derived control sequence is indeed in
a region reasonably close to optimality.

For the case study considered, the control problem may
thus be tackled with a substantially lower computational
effort, so that the effective potential for future applications
appears to be encouraging.
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V. CONCLUSIONS

Lagrangian decomposition has been extensively applied
to a variety of optimization problems and as such represents
a consolidated technique in the ambit of mathematical
programming. In this paper, its domain of application has
been further extended by devising a workable and effective
temporal decomposition method that can be directly applied
to the standard MPC problem formulation for MLD sys-
tems. The computational results reported for the hybrid case
study confirm that the proposed scheme yields computation
times reduced by an order of magnitude and produces
reasonably accurate numerical values compared with the
original full optimization problem.
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