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Abstract—Recently, a computational issue of sphere decoding
algorithm (SDA) during transient operation of multistep model
predictive control has been addressed in [1] and achieved its
real-time implementation in [2] for a medium-voltage electrical
drive system. This is achieved by projecting the unconstrained
solution onto the convex-hull of the finite control set during tran-
sient operation. Therefore, a new initial sphere that guarantees
feasibility and includes a significant smaller number of candidate
solutions is obtained. This reduces the computation time required
to solve the optimization problem. However, the reduction of the
computational burden comes at the expense of (mild) suboptimal
results [3]. This paper analyses the possibility to obtain a subop-
timal solution by the SDA based optimization during transient
operation. To deal with this suboptimality issue, this work
explores the possibility to enlarge the convex-hull, whose size
is by definition tied to the original finite control set. Therefore,
in this work, the convex-hull is treated as a SDA initialization
parameter during transient operation. As will be demonstrated,
enlarging the convex-hull size reduces the possibility to obtain
a suboptimal solution during the transient operation retaining,
thus, the optimality during the whole converter operation.

Index Terms—Predictive Control, Long Prediction Horizon,
Sphere Decoder, Transient Operation, Suboptimality

I. INTRODUCTION

In recent decades, model predictive control (MPC) has
paved its way in becoming one of the most attractive control
alternatives fo power electronics converters and electrical
drives [4]. In MPC, an optimal control problem can be
formulated by considering the physical limits of the system
and, as a result, several constraints and nonlinearities can be
included to achieve the best possible outcome. These features
of MPC, combined with the available computational power,
justify its widespread acceptance from the power electronic
community.

Among the MPC families, the finite control set MPC (FCS-
MPC) is most widely utilized. In this strategy, the optimization
and modulation problem are formulated in one stage; thus, no
modulator is needed. However, performing the optimization
is still computationally challenging as the number of control
inputs or the length of the prediction horizon increases. As

reported recently, multistep MPC can improve the system
performance [5]–[7] when compare to its horizon-one coun-
terpart. However, the computational challenges for prediction
horizons longer than one are significant. Moreover, the use of
an exhaustive search algorithm (ESA)—according to which
all candidate solutions are enumerated to conclude to the
optimal one—further aggravate these challenges. This is due
to the fact that the number of candidate solutions increases
exponentially with the prediction horizon steps, rendering ESA
computationally intractable.

To achieve real-time implementation of multistep MPC, the
sphere decoding algorithm (SDA), originally introduced in
the field of communications, can be adapted to solve opti-
mal control problem associated to multistep MPC for power
converters and drives [6]–[8]. SDA is an efficient optimization
algorithm for quadratic integer optimal problems, which can
be used to optimally obtain the converter switch position.
This is achieved by setting an initial sphere centered on the
unconstrained optimal solution and with a radius defined by
a good initial input candidate. Thus, any input combination
from the FCS that lies outside the sphere is discarded from
evaluation. Therefore, the computational efficiency of the SDA
is directly associated to the initial sphere. Nevertheless, during
transient operation, the unconstrained solution can be placed
far from the FCS, yielding to a large initial sphere, which
increases the computational time required by the SDA to
obtain the optimal solution.

To overcome this issue, an interesting solution was orig-
inally proposed in [1]. Therein, a convex hull of the FCS
was used to discriminate between steady-state and transient
operation. In doing so, if the unconstrained optimal solution
lies inside the convex hull then, the SDA is performed as usual.
Conversely, whenever the unconstrained optimal solution lies
outside the convex hull, it is considered as transient operation.
In that case, it is proposed in [1] to project the unconstrained
optimal solution onto the convex hull and use this projection as
center for the initial sphere. Consequently, a new initial sphere
that guarantees feasibility and includes a significant smaller



number of candidate solutions is obtained. This reduces the
computation time required to solve the optimization problem.
This idea has been adopted in [2], [3] for multistep MPC
formulated for medium-voltage electrical drive systems. Im-
portantly, the reduction of the computational burden comes at
the expense of (mild) suboptimal results [3], since the optimal
problem considering the projection differs from the original
one.

The paper at hand analyses the possibility to obtain a
suboptimal solution by the SDA-based optimization during
transient operation. To deal with this suboptimality issue, this
work explores the possibility to enlarge the convex-hull, whose
size is by definition tied to the original finite control set.
Therefore, in this work, the convex-hull is treated as a SDA
initialization parameter during transient operation. As will
be demonstrated, enlarging the convex-hull size reduces the
possibility to obtain a suboptimal solution during the transient
operation retaining, thus, the optimality during the whole
converter operation. To validate this proposal, an induction
motor drive system is chosen as a case study. Simulation
results are presented to verify the effectiveness of enlarging the
convex-hull size, allowing SDA to preserve optimality for the
whole range of operating points when using multistep MPC
with prediction horizon as long as N = 10 steps. Finally,
experimental results of the closed-loop system behavior using
multistep MPC with N = 4 and SDA with enlarged convex-
hull are also provided.

II. OPTIMAL CONTROL PROBLEM OF IM DRIVE

The predictive controller for an induction machine (IM)
drive system here follows the cascaded structure of the field
oriented control (FOC), where the electromagnetic system
is controlled by a model predictive current control (MPCC)
and classical proportional-integral (PI) controllers govern the
mechanical system as shown in Fig. 1. The discrete-time state-
space model of the IM drive system is formed as

x(k + 1) = A(k)x(k) +Bu(k) (1a)
y(k) = Cx(k) (1b)

where the state vector, x = [is↵ is�  r↵  r� ]T 2 R4,
consists of the stator currents and the rotor fluxes in ↵�-
framework, while the stator current is the output variable,
i.e., y = [is↵ is� ]T 2 R2. Finally, the control input vector,
u = [µa µb µc]T 2 U = V3, is composed of the inverter
voltage levels, µ�, 8� 2 {a, b, c}, where µ� 2 V = {�1, 0, 1}
for a three-level inverter, and the system matrices (A, B and
C) are obtained from the IM drive system model [2]. The
latter are summarized in Remark. 1.

The main objective of MPCC is for the output variables y
(i.e., the stator currents) to track their references y?, while
maintaining a low inverter switching frequency. At each time
step k, the objectives are mapped into a cost function over a
finite prediction horizon N as

JN (k) =
k+N�1X

`=k

ky(`+1)�y?(`+1)k22 + �uk�u(`)k22 (2)
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Fig. 1. A cascaded FOC control structure with speed and flux outer control
loop and MPCC inner control loop governing an IM fed by a three-phase
three-level H-Bridge inverter.

where the first term penalizes the stator current tracking
error and the second term (�u(`) = u(`) � u(` � 1)) is
related to the switching effort. Furthermore, the weighting
factor, �u > 0, adjusts the trade-off between these two
control targets. Then, the optimal control input sequence,
Uopt(k) = [uT

opt(k) . . . uT
opt(k + N � 1)]T , is obtained by

solving the following optimization problem

Uopt(k) = arg min
U(k)

{JN (k)} (3a)

subject to: x(`+ 1) = A(k)x(`) +Bu(`), y(`) = Cx(`)
(3b)

U(k) 2 U (3c)
k�u(`)k1  1, 8` 2 k, . . . k +N � 1, (3d)

where, (3b) is the system constraint given by (1), (3c) restricts
the control input sequences, U(k) = [uT (k) . . . uT (k+N �
1)]T , that belong to the FCS, U = V⇣=3N , and (3d) is the
transition voltage level constraint which is limited to one, in
order to avoid high dv/dt ratings [4]. Normally, transition in
any voltage level becomes more than one (i.e. violates (3d))
during the transients and/or worst case condition of the steady-
states [9].

Remark 1. Considering the stator currents (is = [is↵ is� ]T ),
the rotor fluxes ( r = [ r↵  r� ]T ) and the rotor’s speed
!m as the state-variables, the continuous-time state equations
of the IM drive system can be expressed as

dis
dt
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Jm
d!m

dt
= �fm!m + Te � Tl (4c)

where ⌧r = Lr
Rr

, kr = Lm
Lr

, R� = Rs+Rrk2r , L� = Ls�k2rLr,
and ⌧� = L�

R�
stand for rotor time constant, rotor coupling

factor, equivalent resistance, total leakage inductance, and
transient-stator-time constant, respectively, see [10]. Addi-



tionally, Tl is the mechanical load torque, and Te is the
electromagnetic torque given by

Te =
3

2
np

Lm

Lr
( r↵is� �  r�is↵) (5)

where Rs (Rr), Ls (Lr), Lm, fm, and np stand for stator
(rotor) resistance, stator (rotor) inductance, magnetizing induc-
tance, friction coefficient, and number of pole pairs, respec-
tively. According to the MPCC scheme in ↵�-framework, the
continuous-time state-space model becomes

dx(t)

dt
= Ac(t)x(t) +Bcu(t), y(t) = Cx(t) (6)

where
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2
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with the Clarke-transformation matrix, Ct. By performing the
well-known Forward-Euler method with a sampling period of
Ts (time step k 2 N) on (6), the discrete-time state-space
model (1) is formed with system the system matrices, A(k) =
I4 + TsAc(k), (where I4 is an identity matrix of size four),
B = TsBc, and C as per (7).

III. SDA BASED OPTIMIZATION

This section briefly introduces the basic formulation of the
SDA, and most importantly, the suitable initialization approach
to be used. As shown, thanks to the aforementioned initial-
ization method, the computational burden of the optimization
process during transients is significantly reduced.

A. Equivalent ILS Problem

The original optimization problem (3) can be used easily to
compute the so-called unconstrained solution, Uuc(k) 2 R⇣ .
Based on that, (3) is reformulated as an equivalent integer
least-squares (ILS) problem [8], i.e.,

Uopt(k) = arg min
U(k)

kH(k)U(k)� Ūuc(k)k22, (8)

subject to (3c) and (3d). Here, Ūuc(k) = H(k)Uuc(k) 2 R⇣ .
As derived in [2], [8], H(k) 2 R⇣⇥⇣ is a non-singular lower
triangular matrix (lattice generator) for �u > 0, and is obtained
by performing the Cholesky decomposition [11] during the
intermediate stage of the ILS-problem (8) formation. Once the
ILS-problem has been formulated, the next step is to initialize
the SDA to perform the optimization.

B. Initialization Approach

The SDA forms an initial sphere, Sini, with a center, ⇥, and
an initial radius, ⇢ini, based on the associated ILS-problem
to be solved. This is achieved by computing ⇢ini, which is,

in fact, the Euclidean distance between the center ⇥ and an
initial control input sequence, Uini, i.e.,

Sini(k) : ⇢2ini(k) = kH(k)Uini(k)�⇥(k)k22. (9)

The computational burden of the SDA depends directly on the
size of initial sphere Sini(k) and, thus, the selection of center
⇥(k) and initial radius ⇢ini(k). This Sini(k) should be small
enough containing a possibly limited number of candidate
solutions in it, hence less number of computations are per-
formed. To this end, two different initialization approach have
been used in [2] depending on the location of unconstrained
optimal solution Uuc(k) during the steady-state and transient
operations.

According to an educated-guess initialization approach pro-
posed in [8], the initial sphere Sini(k) in (9) is formed by
considering Ūuc(k) as the center ⇥(k). Furthermore, Uini(k)
is chosen by using the previous optimal input sequence, and
shifting it backwards by one time-step. This approach is partic-
ularly effective at steady-state operation, as the unconstrained
solution Uuc(k) usually belongs to the convex-hull, CH1, of
the original FCS U, i.e., Uuc(k) 2 CH1, and it is defined as

CH1 = Conv(U) ⇢ R⇣ . (10)

As a result, usually a compact Sini(k) results, and, thus,
less computations are required. In contrast, the educated-
guess initialization approach may not be a feasible option for
transients, since Uini(k) is no longer a good guess like steady-
state and is far from its previous optimal. This is because the
unconstrained solution Uuc(k) may be located far away from
CH1 (Uuc(k) /2 CH1) and thus, a larger initial sphere Sini(k)
is formed that leads to a higher number of computations.

This issue has been solved in [1] by using a box-constrained
quadratic programming (QP) problem1 that projects the infea-
sible Uuc(k) 62 CH1 on CH1. This provides a feasible center
and a relatively small initial radius for the SDA. Specifically,
by solving

Ubc1(k) = arg min
U(k)

kH(k)U(k)� Ūuc(k)k22 (11a)

subject to: U(k) 2 CH1 ⇢ R⇣ (11b)

the projected solution Ubc1(k) results. This is equivalent to
Uuc(k), whenever Uuc(k) 2 CH1 (generally, during the steady-
state). Having found Ubc1(k) 2 CH1, the new ILS-problem
can be written as

Usopt(k) = arg min
U(k)

kH(k)U(k)� Ūbc(k)k22 (12a)

subject to: (3c) and (3d). (12b)

In (12), Ūbc(k) = H(k)Ubc1(k) 2 R⇣ acts as the new center
⇥ for the SDA. Moreover, a feasible initial vector, Uini(k) =

1An exterior point active set algorithm based on Lagrangian multipliers and
the Karush-Kuhn-Tucker conditions is computationally feasible to solve this
problem [12]–[14].



Usq(k) = [uT
sq(k) . . . uT

sq(k + N � 1)]T , is obtained when
Uuc(k) /2 CH1, by sequentially quantizing Ubc(k) to U, i.e.,

Usq(k) = qU(Ubc(k)) (13a)
subject to:k�usq(`)k1  1 (13b)

8` = k, . . . , k+N�1, where �usq(`) = usq(`)�usq(`�1),
usq(k�1) = uopt(k�1) and the operator qU() is an Euclidean
vector quantizer. Here, the transition voltage level constraint
(13b) in (13b) is the similar to the one considered in (3d).
However, Usq(k) differs from the so-called Babai estimation
[15], [16] (also called standard quantization), by taking into
account the constraint (13b). Furthermore, Uini(k) = Usq(k)
is chosen by using the previous optimal input. Hence, Usq(k)
is indeed a suitable Uini(k) for transients over Ueg(k) used in
[8]. Finally, the new initial sphere Sini(k) is formed as per (9)
with the new ⇥(k) = Ūbc(k), and the new ⇢ini(k), computed
by using Uini(k) = Usq(k). Consequently, the computational
burden of the SDA is reduced considerably with a significantly
smaller Sini(k) when solving the alternative optimal problem
(12) during transients.

C. Optimization for Transient Operation

The optimization process of SDA begins by considering
the selected initialization approach and a tentative solution
is constructed element-by-element by performing sequential
computation. This process is continued until a full-length
solution is constructed and all elements are visited. In this
case, the best solution is found, which is, in fact, the actual
Uopt(k) in (8) or Usopt(k) in (12). It is important to note
that the SDA solves the alternative optimization problem (12)
during transient operation, which in general is not equivalent
to the ILS-problem (8). Thus, Usopt(k) may be suboptimal for
(8), i.e., Usopt(k) 6= Uopt(k). To analyze this fact, the original
convex-hull CH1 can be enlarged. In doing so, a smaller
extension in the initial radius ⇢ini(k) as in (9) is allowed when
Uuc(k) /2 CH1 but not far (in the Euclidean sense) from CH1.

A newly extended convex-hull, CH2, is obtained by enlarg-
ing the FCS U by one positive and negative level, i.e.,

CH2 = Conv(bU) ⇢ R⇣ (14)

where bU = bV⇣ and bV = {�2,�1, 0, 1, 2}.
An insight of the direct MPC problem for a transient

operation that may yield a suboptimal solution is depicted
in Fig. 2. In this example, an FCS U of four control input
vectors are represented as gray solid circles. The associated
convex-hulls CH1 and CH2 are depicted in Fig. 2a. At time
step k, the ellipses centered on the unconstrained solution
Uuc(k) represent the level sets of the original optimization
problem (8). Understandably, all control input vectors under
an ellipse correspond to the same cost value. Therefore, the
larger the Euclidean distance of an ellipse from Uuc(k) is the
higher associated cost.

According to the definition of the ILS-problem ((8) or
(12)), the matrix H(k) introduces a linear transformation of
all contents in original space such as control input vectors,
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Ūuc

Ūopt

Ūsopt
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Fig. 2. Graphical representation of the direct MPC problem (an FCS U of
four control input vectors) in two-dimensional space for transient operation:
The projection of the unconstrained solution Uuc(k) (shown as blue solid
circle/ square) onto the two convex-hulls CH1 and CH2 in (a) the original
space, and (b) the transformed space generated by H .

convex-hulls, other vectors, etc, and thus, a new transformed
space is generated as depicted in Fig. 2b. In this space,
all ellipses are transformed into circles (spheres for larger
dimensions) centered on Ūuc(k) = H(k)Uuc(k). When pro-
jecting an infeasible unconstrained solution Uuc(k) onto the
boundary of CH1, i.e., Ubc1(k), the SDA may lead to a
suboptimal solution Usopt(k) instead of Uopt(k) by solving
(12). This scenario can be seen from Fig. 2b that Ūsopt(k)
is the closed point to Ūbc1(k), i.e., d2 < d1. On the other
hand, when the projection is performed on CH2, the SDA
finds Uopt(k) considering Ūbc2(k) as new center; the Euclidean
distance d3 between Ūbc2(k) and the optimal solution Uopt(k)
is the smallest as compared with the distances from the other
candidate solutions. Therefore, this analysis demonstrates the
benefits of extending the convex-hull to reduce the possibility
of suboptimality during transients.

IV. PERFORMANCE EVALUATION

The three-level H-bridge power inverter drives a 1.1 kW,
420 V, 50 Hz squirrel-cage IM. Consider a transient scenario
where a full load step change in the torque Tl = Te,nom = 1
pu is applied at 0.1 s and the controller is operated with the
sampling interval Ts = 125µs. The details of the IM drive
parameters, and both PI and predictive controller parameters
are shown in Tables I and II, respectively.



Table I
INDUCTION MACHINE DRIVE PARAMETERS

Parameter Symbol SI value
dc voltage per HB Vdc 300 V
dc-link capacitance Cdc 3.3 mF
Rated stator frequency fs,rat 50 Hz
Nominal power Pnom 1.1 kW
Nominal voltage Vnom 420 V
Nominal current Inom 2.75 A
Nominal speed !m,nom 1400 rpm
Nominal electromagnetic torque Te, nom 7 Nm
Nominal rotor (flux linkage)  r,nom 1 Wb
Stator resistance Rs 6.03 !
Rotor resistance Rr 6.085 !
Stator/Rotor self-inductance Ls/Lr 0.5192 H
Magnetizing inductance Lm 0.4893 H
Inertia Jm 0.011787 kg.m2

Friction coefficient fm 0.017925
Number of pole pairs np 2

Table II
PI AND PREDICTIVE CONTROLLER PARAMETERS

Parameter Symbol SI value
Predictive controller sampling time Ts 125 µs
Sampling time of PI!/ PIf Ts!/Tsf 1000 µs
Bandwidth of PI!/ PIf BW!/BWf 10 Hz
Discrete-time proportional gain of PI! kp! 0.20943
Discrete-time integral gain of PI! ki! 0.20459
Discrete-time proportional gain of PIf kpf 7.66610
Discrete-time integral gain of PIf kif 7.46164
Direct current (saturation) isd,sat 2.044 A
Quadrature current (saturation) isq,sat 3 A
Weighting factor �u 0.01� 0.3
Prediction horizon N 1� 10

To investigate the optimality (suboptimality) of the optimal
solution with and without the proposed modification in the
convex-hull, a measuring metric called degree of optimality,
�, is defined as

�(k) =

⇢
1�

JN,sopt(k)� JN,opt(k)

JN,opt(k)

�
⇥ 100%, (15)

where, JN,opt(k) and JN,sopt(k) are the cost values computed
for the control input obtained using the educated-guess and
box-constrained QP initialization approach, respectively. Note
that the cost value associated with any suboptimal solution
is relatively higher than its optimal under the similar control-
states of the system, i.e., JN,sopt(k) > JN,opt(k). Therefore,
�(k) in (15) states the closeness of an obtained suboptimal
solution towards its optimal one, and this metric takes up
a numeric range of 0 to 100%. That means whenever �(k)
is close to 100%, JN,sopt(k) ⇡ JN,opt(k) and thus, the
elements in Usopt(k) are almost similar to the elements in
Uopt(k). Therefore, it can be said that for �(k) = 100%

Table III
THE DEGREE OF OPTIMALITY �(k) FOR THE TRANSIENT OPERATION

PRESENTED IN FIG. 3, WHEN TWO DIFFERENT Convex-hullS CH1 AND
CH2 ARE CONSIDERED IN THE INITIALIZATION APPROACH OF SDA. THE

RESULTS ARE BASED ON SIMULATIONS AND ARE COMPUTED FOR THE
PREDICTION HORIZON N = 1 TO 10.

N Convex-hull �(k) [%]
1

CH1

99.15
2 95.23
3 97.49
4 98.38
5 96.41
6 89.22
7 94.63
8 88.76
9 91.56

10 92.44
1-10 CH2 100
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Fig. 3. Experimental transient results for N = 4 and convex-hull CH2: IM is
running under !?

m = !m,nom,  ?
rd =  rd,nom, and Tl = Te,nom is applied at

0.1 s. (a) !?
m, !m; (b) T ?

e , Te ; (c) i?sabc, isabc; and (d) inverter voltages
vsabc.

(i.e., JN,sopt(k) = JN,opt(k)), Usopt(k) is exactly equivalent
to Uopt(k).

Firstly, the degree of optimality �(k) is measured by per-
forming several simulations for prediction horizon N = 1
to 10 under the transient conditions mentioned above. For
the SDA-based optimization, the convex-hull CH1 is con-
sidered in the initialization approach of box-constrained QP.



Furthermore, the educated-guess initialization approach is also
adopted in parallel just to compute JN,opt, which is indeed, an
optimal cost. Subsequently, �(k) is computed for the obtained
suboptimal solution during the transient operation as per (12)
and presented in Table III for N = 1 to 10. As one can see,
suboptimal solutions are frequently obtained for all N , i.e.,
�(k) < 100%. Moreover, the degree of sub-optimality does
not follow any pattern with respect to N .

Secondly, similar analysis is performed under the same
configuration, except using the extended convex-hull CH2. It
can be stated that all tested N the optimality is maintained
for the initialization approach using CH2, i.e., � = 100%.
Nevertheless, this optimality can not be guaranteed always
from theoretical perspective, since an alternative optimization
(12) is performed when Uuc(k) /2 CH2(k). Consequently, the
chance of obtaining suboptimal solutions are also increased.

Finally, the experimentation is performed on a
dSPACE DS1106 control platform incorporated with
MATLAB/Simulink with the sampling period of Ts = 125µs
and the implementation is achieved for a prediction horizon
of four steps, i.e., N = 4. The results are shown in Fig. 3,
where the machine is initially running at nominal speed
!?
m = !m,nom = 1 pu, while considering the nominal

rotor flux reference  ?
rd =  rd,nom = 1 pu. Then, the

transient scenario is introduced by applying a full load, i.e.,
Tl = Te,nom = 1 pu at 0.1 s. The motor speed !m experiences
a 4.7 % undershoot with a settling time of 6 ms, which is
indeed, a natural response of the controller. Furthermore,
a typical behavior of the electromagnetic torque Te and
the stator currents isabc are observed in Fig. 3(b) and (c),
respectively.

V. CONCLUSIONS

In this work, the impact of extending the convex-hull in the
initialization approach of SDA during transient operation has
been analyzed. With graphical explanation, it has been shown
that when using the original convex-hull formed by the finite
control set, there exits a possibility of obtaining a suboptimal
solutions by the SDA during transient operation. This issue
has been solved in this work by enlarging the convex-hull
size. Thus, the probability for the SDA to maintain optimality
over the whole operating regime of the system is significantly
higher.

Future research will focus on a systematic design of an
enlarged convex-hull in terms of optimality and computational
effort of multistep MPC problem.

ACKNOWLEDGMENT

This research was funded in part by the Australian Gov-
ernment through the Australian Research Council (Discovery

Project No. DPDP180100129). This work is supported by
CONICYT + FONDECYT Regular + 1191520. The work
of C. A. Rojas was supported by CONICYT-PCHA/Becas-
Chile/2016-74170048 and CONICYT + PAI CONVOCATO-
RIA NACIONAL SUBVENCION A INSTALACION EN LA
ACADEMIA CONVOCATORIA 2018 + PAI77180032.

REFERENCES

[1] R. Baidya, R. P. Aguilera, P. Acuna, R. Delgado, T. Geyer, D. Quevedo,
and T. Mouton, “Fast multistep finite control set model predictive control
for transient operation of power converter,” in Proc. 42nd Annu. Conf.
IEEE Ind. Electron. IECON’16, Florence, Italy, Oct. 2016, pp. 5039–
5045.

[2] P. Acuna, C. Rojas, R. Baidya, R. P. Aguilera, and J. Fletcher, “On the
impact of transients on multistep model predictive control for medium-
voltage drives,” IEEE Trans. Power Electron., pp. 1–1, 2019.

[3] P. Karamanakos, T. Geyer, and R. P. Aguilera, “Long-horizon direct
model predictive control: Modified sphere decoding for transient oper-
ation,” IEEE Transactions on Industry Applications, vol. 54, no. 6, pp.
6060–6070, Nov 2018.

[4] J. Rodrı́guez, M. P. Kazmierkowski, J. R. Espinoza, P. Zanchetta,
H. Abu-Rub, H. A. Young, and C. A. Rojas, “State of the Art of Finite
Control Set Model Predictive Control in Power Electronics,” IEEE Trans.
Ind. Informat., vol. 9, no. 2, pp. 1003–1016, May 2013.

[5] T. Geyer, P. Karamanakos, and R. Kennel, “On the benefit of long-
horizon direct model predictive control for drives with lc filters,” in
2014 IEEE Energy Conversion Congress and Exposition (ECCE), Sep.
2014, pp. 3520–3527.

[6] T. Geyer, and Quevedo, D. E., “Performance of multistep finite control
set model predictive control for power electronics,” IEEE Trans. Power
Electron., vol. 30, no. 3, pp. 1633–1644, Mar. 2015.

[7] P. Karamanakos, T. Geyer, N. Oikonomou, F. D. Kieferndorf, and
S. Manias, “Direct Model Predictive Control: A Review of Strategies
That Achieve Long Prediction Intervals for Power Electronics,” IEEE
Ind. Electron. Mag., vol. 8, no. 1, pp. 32–43, Mar. 2014.

[8] T. Geyer and D. E. Quevedo, “Multistep Finite Control Set Model
Predictive Control for Power Electronics,” IEEE Trans. Power Electron.,
vol. 29, no. 12, pp. 6836–6846, Dec. 2014.

[9] S. Vazquez, J. I. Leon, L. G. Franquelo, J. Rodriguez, H. A. Young,
A. Marquez, and P. Zanchetta, “Model Predictive Control: A Review of
Its Applications in Power Electronics,” IEEE Ind. Electron. Mag., vol. 8,
no. 1, pp. 16–31, March 2014.

[10] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric
Machinery and Drive Systems, 2nd ed. Hoboken, NJ, USA: Wiley,
2002.

[11] R. B. Schnabel and E. Eskow, “A new modified cholesky factorization,”
SIAM J. Sci. and Stat. Comput., vol. 11, no. 6, pp. 1136–1158, 1990.

[12] S. Bubeck, Convex Optimization: Algorithms and Complexity. Now
Foundations and Trends, 2015.

[13] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK:
Cambridge Univ. Press, 2004.

[14] J. J. Mor and G. Toraldo, “On the solution of large quadratic program-
ming problems with bound constraints,” SIAM Journal on Optimization,
vol. 1, no. 1, pp. 93–113, 1991.

[15] L. Babai, “On lovász lattice reduction and the nearest lattice point
problem,” Combinatorica, vol. 6, no. 1, pp. 1–13, 1986.

[16] P. Karamanakos, T. Geyer, T. Mouton, and R. Kennel, “Computation-
ally efficient sphere decoding for long-horizon direct model predictive
control,” in IEEE Energy Conversion Congress and Exposition (ECCE),

Sep. 2016, pp. 1–8.


