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Abstract—Recently, an efficient optimization strategy based
on the sphere decoding algorithm (SDA) has been proposed
to solve the optimal control problem underlying direct model
predictive control (MPC) formulations with long horizons.
However, as will be elucidated in this work, this optimization
algorithm presents some limitations during transient operation
of power converters, which increase the execution time required
to obtain the optimal solution. To overcome this issue, the
present work presents an improved version of the SDA for
direct MPC that is not affected by transient operations of the
power converter. The key novelty of the proposal is to reduce
the execution time of the SDA when the system is in a transient
by projecting the unconstrained optimal solution onto the
envelope of the original finite control set. As evidenced by the
simulation results, the proposed SDA is able to quickly compute
the optimal solution for the long-horizon direct MPC during
both steady-state and transient operation of the power converter.

Index Terms- Finite control set, predictive control, multilevel
converters, optimization problem, sphere decoding, convex hull.

I. INTRODUCTION

Multilevel converters (MCs) are the preferred technology
for medium/high-voltage and high power applications [1], [2].
Several MC topologies have been proposed in the literature,
which offer different features mainly related with high-quality
voltage and currents waveforms at medium/high-voltage using
low voltage rated semiconductor switches. Traditional modu-
lation techniques or special methods can be used to provide
a multilevel output voltage with improved power quality (i.e.,
low harmonic profile, low dv/dt ratings, etc). Thus, MCs are
of special importance in high power applications, such as high-
power drives [3], active power filters [4], and renewable energy
applications [5], [6], among others.
Model predictive control (MPC) for MCs has become an in-

teresting option due to its attractive features e.g., fast dynamic
response, easy inclusion of nonlinearities and constraints, etc
[7]. Several works can be found in the literature utilizing
the MPC successfully for MCs, e.g., [8]–[13]. Among the

predictive control families, the so-called Finite-Control-Set
MPC (FCS-MPC) or direct MPC is the most popular one for
power converters [14], [15]. FCS-MPC directly considers the
switching states or voltage levels as control inputs into the
optimization problem. In the standard approach, the optimal
control input is found by evaluating a finite set of input
combinations in a cost function which has minimum cost
value. Therefore, a modulation stage is not required.
In recent works, the importance of using long horizon direct

MPC schemes has been demonstrated [16], [17]. The advan-
tage of moving to longer horizons is to obtain an improved
steady-state performance in terms of harmonic distortion and
switch commutations. However, the required computational
effort is challenging since the number of input combinations
increases exponentially with the horizon length. This issue be-
comes a particular concern when implementing the controllers
standard control platform such as FPGAs, DSPs, etc [18],
[19]. Recent research outcomes show that the computational
burden can be reduced significantly by introducing an effi-
cient optimization strategy named Sphere Decoding Algorithm
(SDA) [20]–[22]. Nevertheless, as will be elucidated in this
work, standard SDA presents some limitations during transient
operations of power converters, which increase the execution
time required to obtain the optimal solution. This compromises
the implementation of SDA to solve the associated optimal
problem of FCS-MPC governing power converters.
The work at hand presents an improved version of the SDA,

which tackles the aforementioned issues. Here, the controller
is directly formulated in the original abc-framework. The key
novelty of the proposal is to quickening the SDA, when the
system is in transient by projecting the unconstrained optimal
solution on the envelope of the original finite control set. As
evidenced by the simulation results, the proposed SDA is able
to quickly compute the optimal solution for the long-horizon
direct MPC during both steady-state and transient operations
of the power converter.
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Fig. 1. Schematic of a three-phase three-level HB inverter: (a) block diagram
of the FCS-MPC; (b) single H-Bridge converter

II. FCS-MPC FORMULATION

To employ the new proposal of interest, this paper considers
the use of FCS-MPC to govern a three-level three-phase H-
Bridge (HB) inverter shown in Fig. 1. Here, each HB cell is
electrically fed with an isolated dc voltage source. The inverter
supply power to a passive RL load. This section introduces the
system model and the optimization problem.

A. Converter Model

From the basic circuit analysis, we can express the
continuous-time dynamic model of the inverter as:

diy(t)

dt
= −

R

L
iy(t) +

1

L
(vyn(t)− v0n(t)), (1)

for all y ∈ {a, b, c} and vyn(t) is the individual cell output
voltage. The common mode voltage (CMV, v0n) is given by:

v0n(t) =
1

3
(va(t) + vb(t) + vc(t)). (2)

Usually in power electronics, the power switches are con-
sidered as control input [23]. This may lead to a large number
of input combinations, which may difficult unnecessarily the
implementation of FCS-MPC. To account for this, this work
considers the phase voltage levels, v�y , as control input [22].
Thus, for a generic η-cells converter, the output voltage
becomes:

vyn(t) =
Vdc

η
v�y(t), (3)

where η is the number of cell per phase (η = 1 for one-cell)
in the converter and,

v�y(t) ∈ V
�

= {−η,−η + 1, . . . , 0, . . . , η − 1, η}. (4)
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Fig. 2. Flow diagram of the proposed FCS-MPC strategy for horizon one

Here, we implement the FCS-MPC for a HB inverter in the
original abc-framework. The system states and control inputs
are chosen as:

iab(k) =

[
ia(k)

ib(k)

]
∈ R

2, u(k) =

⎡
⎢⎣
v�a(k)

v�b(k)

v�c(k)

⎤
⎥⎦ ∈ U, (5)

where ic(k) = −(ia(k) + ib(k)) and the input, u(k), belongs
to the finite control set U

�

= V
3. Now, the discrete-time

dynamic model can be obtained by applying the forward Euler
discretization to (1) with a sampling period of Ts, i.e.,:

iab(k + 1) = Aiab(k) +Bu(k), (6)

where

A =

[
1− RTs

L
0

0 1− RTs

L

]
,B =

VdcTs

3L

[
2 −1 −1

−1 2 −1

]
. (7)

B. Optimal Control Problem

In this work, our control target focuses on the reference
current tracking and the switching effort at each time step-k.
The first target is to track the current reference, i�ab, for the
HB output current, i.e.,:

i�ab(t) =

[
I� sin(ωt)

I� sin(ωt− 2π/3)

]
, (8)

where, I� is the amplitude of the current references.
The second target is the switching effortΔu′(k) = u′(k)−

uop(k − 1). Here, uop(k − 1) is the optimal solution found
at the last step (k − 1). Thus, the cost function penalizes the
current tracking error and the switching effort as shown below
for the horizon length N = 1,

J(k) = ‖i′ab(k + 1)− i�ab(k + 1)‖22 + λ‖Δu′(k)‖22. (9)
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Here, i′ab(k + 1) stands for the tentative HB current pre-
dictions that is generated by the tentative control input u′(k).
In (9), ‖ · ‖22 represents the quadratic eucledian norm, i.e.,
‖a − a�‖22 = (a1 − a�1)

2 + . . . + (ap − a�p)
2, for a pair

of vectors a, a� ∈ R
p. Additionally, the weighting factor λ

penalizes the impact on commutations to achieve the desired
switching frequency. In recent research work [20], this cost
function (9) has been proposed for three-level neutral point
clamped voltage source inverter in the the αβ-framework.
The optimal control input uop(k), which is to be applied by

the converter, is the one that minimizes the cost function. Thus,
the optimization problem underlying in FCS-MPC strategy can
be written as:

uop(k) = arg{min
u∈U

J(k)}. (10)

Normally, in power electronics, one step voltage level
changes are recommended to avoid high dv/dt rating in the
system. Thus, the constraint on the optimal control input to
be obtained uop(k) can be defined as follows:

‖Δu′(k)‖∞ ≤ 1. (11)

A flow diagram of the FCS-MPC strategy for N = 1 is
shown in Fig. 2. This strategy considers the aforementioned
cost function (9) by performing in general curent prediction
i′ab(k + 1), current reference calculation i�ab(k + 1) and the
optimal control input uop(k− 1) found at previous time step-
(k−1). The optimal input uop(k) is obtained by solving (10).
Now, the cost function and the optimization problem for

arbitrary horizon length N is:

JN =

k+N−1∑
l=k

‖i′ab(l + 1)− i
�
ab(l + 1)‖22 + λ‖Δu

′(l)‖22, (12)

U
opt(k) = arg{min

U∈U
JN}. (13)

where U(k) = [uT (k) . . . uT (k + N − 1)]T is the input
sequences which belongs to the finite input sequence U

�

=
V

3N , and Uopt is the optimal solution. Interested readers are
referred to [23] for a detailed analysis of long horizon FCS-
MPC.

III. STANDARD SDA
This work uses the well known SDA to find the optimal

control input, uop(k), to be applied to the inverter. The
importance of SDA for long prediction horizons in power
electronics has been shown in the recent research works [20]–
[22]. Here, we briefly discuss the working principle of SDA
for the horizon-one case, which helps the reader to understand
our proposal.
SDA solves the optimization problem of interest (10) in an

equivalent triangular-least squares form. To do this, we rewrite
(10) as the following integer quadratic programming problem:

uop(k) = argmin
u∈U

{uT (k)Wu(k) + 2uT (k)F (k)}. (14)

where

F (k) = BTAiab(k)−BT i�ab(k)− λuop(k − 1), (15)

andW = BTB+λI3×3 is a symmetric and positive definite
matrix for λ ≥ 0. Thus, we can apply the, so-called, Cholesky
decomposition [20], [24] onW to find a unique invertible and
triangular matrix H ∈ R

3×3, which satisfies:

W = HTH . (16)

When there are no constraints on the input, i.e., u(k) ∈ R
3,

the unconstrained optimal solution uop
uc(k) can be expressed

in the following manner:

uop
uc(k) = arg min

u∈R3

{uT (k)Wu(k) + 2uT (k)F (k)}

=−W−1F (k).
(17)

Now, using (16) and (17), we can rewrite the integer quadratic
problem (14) as:

uop(k) = arg{min
u∈U

‖Hu(k)− yc(k)‖
2
2}, (18)

where yc(k) = Huop
uc(k).

Notice that (18) is a least-squares quantization problem in
triangular form, which is the requirement to implement SDA.
It is important to highlight that obtaining the optimal solution
uop(k) by solving the minimization in (10) is equivalent to
the quantization as per (18).
The SDA solves the above quantization problem (18) by

searching the tentative solutions inside the sphere. This sphere
is defined with the center yc and an initial radius ρ, as
proposed in [20]. To concise the paper we discard the initial
radius selection method. Interested readers are referred to [20]
for detail analysis.
A flow diagram of the SDA for three-phase three-level

HB inverter is shown in Fig. 4. Taking three precalculated
parameters (H ,uop

uc and ρ2), the algorithm starts searching
the prospective solution in a repetitive manner, which satisfy
the following condition:

‖Hu(k)− yc(k)‖
2
2 � ρ(k). (19)

Here,H is the lower triangular matrix that leads the algorithm
to a sequential element-wise computation. Now to see the
computational advantage, (19) can be extended to:

(h11u1 − yc(1))
2 + (h21u1 + h22u2 − yc(2))

2

+(h31u1 + h32u2 + h33u3 − yc(3))
2
� ρ2(k),

(20)

where hij is the (i, j)th-element of H , ui stands for the
ith-element of u and yc(i) refers to the ith-element of yc.
Based on (20), it begins computing the squared distance for
the 1st element (u1) up to the last element (u3) of u(k).
Calculations for each element of u(k) initiate from −η and
ends at η. If the computed distance d′ for ui is larger than
ρ2, then the algorithm discards the rest of the computations
for the remaining elements. However, if d′ for any element
is smaller than ρ2, then the SDA continues with the next
elements. In this way, when d′ for the final element (u3) is
equal or smaller than ρ2, then the corresponding u(k) is a
prospective solution. Whenever we found a better prospective
solution, the algorithm updates uop and ρ2 with d′ as well.
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Hence, the radius of the sphere is reduced if possible [20];
i.e., the search space is reduced. This approach can reduce the
computational effort significantly.
With effective selection of the initial radius, the SDA can

be extended to long horizons and the larger number of phase
voltage level typically interested to multilevel converters.

IV. ENHANCING SDA FOR TRANSIENT OPERATIONS

In this section, we illustrate the proposed modification to
the SDA to achieve a fast optimization during transients of
the power converter. This adaptation is based on the standard
quadratic programming imposed on the integer quadratic prob-
lem (14).
To ease the understanding, we present the idea graphically

in a two-dimensional space for the 3-level HB converter (i.e.,
u1, u2 ∈ {−1, 0, 1}) and horizon length N = 1, see Fig. 3.
Thus, the finite set U has 32 = 9 combinations for the control
input u. At first, we define the convex hull (i.e., the envelope)
of the lattice formed by the finite control set U.

B = ConvexHull(U),U ⊂ B. (21)

In general, during steady-state operation, the unconstrained
optimal solution, uop

uc lies inside the boundary B (i.e., uop
uc ∈

B). However, during transients (reference changes), uop
uc can

be located far away from the lattice boundary. This results in
a large initial sphere and, thereby, high computational time to
find the optimal solution.
In dealing with this situation, whenever the unconstrained

optimal solution, uop
uc, lies outside of B (i.e., uop

uc /∈ B),
we propose to project uop

uc onto B by solving the following
quadratic problem:

û(k) = argmin
u∈B

{uTWu+ 2uTF (k)}. (22)

where
û(k) ∈ R

3N ∈ B. (23)
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We replicate this case in the first plot of Fig. 3, where the
unconstrained optimal solution uop

uc (yellow point), is outside
the boundary B and the optimal solution uop (red point) to be
found is on B. As per definition in [23], the cost function J(k)
forms different ellipses (all points that lead to the same cost)
with their centers at uop

uc. The directions of an ellipse depend
on the eigenvalues ofW . It is clear that ellipses closer to the
center produce smaller cost values. Therefore, for the example
in Fig. 3, the red point produces a lower cost than the blue
one. Now, according to the quadratic programming problem
(22), we obtain û (green point) by projecting uop

uc onto the
boundary. In this work, we propose to consider this projection
as the new center in the original space u1u2 to run the SDA.
Therefore, instead of solving (18), during the transient we

propose to solve the following optimization problem:

uop(k) = arg{min
u∈U

‖Hu(k)− ŷc(k)‖
2
2}. (24)

where
ŷc(k) = Hû(k). (25)

It is important to emphasize that if the optimal solution uop

is one of the outer points of the original lattice formed by the
finite control set, then solving (24) is, thus, equivalent to solve
(18), whenever the unconstrained optimal solution is outside
from the lattice boundary B.
With the transformation matrix H , the original space u1u2

is transformed into the new space v1v2. Here, the optimal
solution is now the one, which is nearest neighbour to the
center. This is because, the cost function forms now different
circles (spheres for more than 2-dimension) with the defined
center in the quantization problem. In essence, (22) brings the
center of the sphere, yc(k) in (18), close to the lattice in an
optimal manner by obtaining ŷc(k). Here, yc (yellow point)
and ŷc (green point) are the centers for the standard and the
modified SDA respectively. It is clear from the figure that,
using both yc and ŷc give us the same optimal solution uop,
since from both, Huop (red point) is the closest solution in
the set. However, the target is closer to ŷc than yc, as g2 < g1.
Here, g1 and g2 are the distance from the target (Huop) to
the centers yc and ŷc respectively.
Consequently, whenever yc(k) is outside the ConvexHull,

a new initial sphere with radius ‖Hu(k−1)− ŷc(k)‖
2
2 is set-

up, which is smaller than ‖Hu(k−1)−yc(k)‖
2
2. This reduces

the computational effort required by the SDA to obtain the
optimal solution. Therefore, this modification helps to speed-
up the SDA during transients.

V. PERFORMANCE EVALUATION: SIMULATION RESULTS
The simulation results of the FCS-MPC governing a three-

level converter using the improved SDA are carried out in this
section. The system model uses the main parameters as shown
in Table. I. The effectiveness of the proposal is verified by
comparing it with the standard SDA used in the recent works
[20], [22].
The results have been obtained in the, MATLAB-Simulink

platform incorporated with PLECS. In Matlab, we use the

Table I
SYSTEM PARAMETERS

Variable Description Values

Vdc dc voltage supply per HB 180 V

I� Reference current amplitude 4 A

f Fundamental frequency of the load current 50 Hz

R Load resistor 47 Ω

L Load inductor 15 mH

fs Sampling frequency 10 kHz

λ Weighting factor 0.1

N Horizon length 5

following quadprog function, to find û(k) in (22), with
the constraints lb = −η∗ones(p, 1) and ub = η∗ones(p, 1).
û(k)=quadprog(W , F (k), [], [], [],[], lb, ub). Here, lb and
ub are used to define the lower and upper boundary of
the ConvexHull B. Note that this is a simple quadratic
programing problem since only lower and upper bounds are
required as constraints.
Since, the steady-state performances are not the concern of

this work, we have shown the results only for the transient-
state. The simulations are performed for 30ms and a step
change (−4A to 4A) in the current reference is enforced at
20ms.
Figure (5) represents the results when the FCS-MPC uses

the standard SDA. One can clearly see from Fig. (5e) that,
during transients the algorithm requires extensively high com-
putational time (Tc ≈ 3.5s) compared with the steady-state to
obtain the optimal solution. The average computational time,
Tc for steady-state is 1.2ms.
On the contrary, the system performances for the proposed

SDA used in FCS-MPC are depicted in Figure. 6. Here, the
computational time Tc required in during transients is similar
to the one needed in the steady-state; see Fig. (6e). The
required computational time, Tc, for the proposed SDA during
the whole simulation period is 1.2ms.
Comparing the resulting inverter voltages and currents ob-

tained by both approaches, it can be clearly observed that
the same optimal solution is obtained by both approaches.
Nevertheless, the proposed SDA is able to find the optimal
solutions efficiently in both steady-state and transients opera-
tion condition of the power converter.

VI. CONCLUSIONS
This work proposed an improved SDA to solve the optimal

control problem associated with FCS-MPC. The proposed
approach is able to achieve the equivalent performance of
standard SDA, in terms of the optimal solution. Consequently,
the predictive controller ensures to obtain the optimal solution
in transient-state, while maintaining the same computational
effort like steady-state.
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Fig. 5. The performance of the FCS-MPC strategy with the standard Sphere
decoding algorithm (SDA) for a step change in the current references. Inverter
voltages for, (a) Phase a, (b) Phase b, (c) Phase c. (d) Load currents, and (e)
computational time.

The key novelty of the proposal lies in the way the center
of the SDA is modified during transients. To do this, the
unconstrained optimal solution is projected over the envelope
of the original finite control set. Thus, a new center for the
SDA is introduced. This speedup the optimization process
since a smaller initial radius is obtained. As evidenced by
the simulation results, the proposed SDA is able to quickly
compute the optimal solution for the long-horizon direct MPC
during both steady-state and transient operations of the power
converter. Motivated by the present outcomes, future work will
be focused on the experimental validation of this novelty and
further contributions to make the SDA even faster.
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